Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(31): 16889-16894, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31114825

ABSTRACT

A novel Raman scattering enhancement was discovered using colloid nanoparticles conjugated with an amine-based copolymer. The interaction potential surface between Raman scattering enhancing nanoparticles was clarified by combining a small-angle scattering method and a model-potential-free liquid-state theory as an in situ observation in the solution state. The potential surface indicates that the most stable position is located around 0.9 nm from the particle surface, suggesting the existence of a nanogap structure between the nanocomposites. The change in Raman scattering enhancement was also acquired during the dispersion process of the aggregated nanocomposites through a glutathione-triggered nanosensing reaction.


Subject(s)
Acrylic Resins/chemistry , Nanocomposites/chemistry , Spectrum Analysis, Raman/methods , Acrylic Resins/chemical synthesis , Glutathione/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size , Surface Properties
2.
Langmuir ; 26(9): 6818-25, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20373784

ABSTRACT

This article describes the glutathione-triggered disassembly of gold nanocomposites composed of gold cores and water-soluble copolymers [poly(N-n-isopropylacrylamide-co-acryloyldiethyletriamine)] attached to the surfaces of gold cores. The gold nanocomposites exhibit a bluish purple color because of the assembled gold cores that are conjugated with the diethylenetriamine groups incorporated into the copolymers. Glutathione added to the gold nanocomposite solution adsorbs onto the surface of the gold cores to liberate diethylenetriamine groups, resulting in spontaneous disassembly that changes the color of the solution to a reddish shade. Increasing the glutathione concentration facilitates the spontaneous disassembly of the gold nanocomposites. For the determination of glutathione, the colorimetric change of the gold nanoparticles is quantified with the a* value of the L*a*b* color coordinates defined by the CIE (Commission Internationale de l'Eclairage) chromaticity diagram. A linear relationship between the a* value and the glutathione concentration of up to 6 x 10(-6) mol/L is obtained 15 min after the addition of glutathione that has a detection limit (defined as 3sigma) of 2.9 x 10(-8) mol/L. The colorimetric assay is successfully applied to the determination of glutathione in eye drops and health supplements.


Subject(s)
Glutathione/analysis , Gold/chemistry , Nanocomposites/chemistry , Polymers/chemistry , Water/chemistry , Colorimetry , Glutathione/chemistry , Models, Molecular , Molecular Conformation , Ophthalmic Solutions/chemistry , Solubility , Sulfhydryl Compounds/chemistry , Temperature
3.
Langmuir ; 23(22): 11225-32, 2007 Oct 23.
Article in English | MEDLINE | ID: mdl-17902709

ABSTRACT

We describe the first determination of thiol compounds with gold nanocomposites composed of gold nanoparticles and thermoresponsive copolymers having polyamino groups. The gold nanocomposites, which are used as a chromatic sensor, reveal chromatic change from blue to red with thermal stimuli, heating followed by cooling the solution. The blue-to-red chromatic change results from disassembly of the gold nanocomposites, which arises from shrinkage of the thermoresponsive copolymers bound to the gold nanoparticle surfaces due to the phase transition induced by thermal stimuli. The disassembly is inhibited by addition of thiol compounds through displacement of the adhered thermoresponsive copolymers. The detached copolymers no longer influence morphological change of the gold nanocomposites. Corresponding with increase of concentration of the thiol compounds, a solution of the gold nanocomposites after the thermal stimuli shows chromatic change, which was quantified with the a* value in L*a*b* chromatic coordinates. A linear relationship between the a* value and concentration of cysteine, examined as a bio-important thiol, is obtained below 7x10(-6) mol dm(-3), estimating a detection limit defined as 3sigma of the blank to be 2.8x10(-7) mol dm(-3). The chromatic sensor of the gold nanocomposites is applied to the determination of cysteine in commercial supplements containing ascorbic acid, which seriously interferes with redox-based determination of cysteine. Analytical results obtained with the chromatic sensor are identical to those obtained with HPLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...