Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 37(5): 1091-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25650345

ABSTRACT

OBJECTIVE: To improve the stability of E. coli-produced non-glycosylated fungal FAD-glucose dehydrogenase induced a disulfide bond by site-directed mutagenesis based on structural comparisons with glucose oxidases. RESULTS: The FAD-glucose dehydrogenase (GDH) mutant Val149Cys/Gly190Cys, which was constructed based on a comparison with the three dimensional structure of glucose oxidase, showed a 110 min half-life of thermal inactivation at 45 °C, which is 13-fold greater than that of the wild-type enzyme. The considerable increase in thermal stability was further supported by Eyring plot analysis. The kinetic parameters of Val149Cys/Gly190Cys (k cat = 760 s(-1), Km = 35 mM, and catalytic efficiency (k cat/Km) = 22 s(-1 )mM(-1)) were almost identical to those of the wild-type enzyme (k cat = 780 s(-1), Km = 35 mM, k cat/Km = 22 s(-1 )mM(-1)). The substrate specificity of Val149Cys/Gly190Cys is indistinguishable from that of the wild type. CONCLUSION: The constructed mutant, Val149Cys/Gly190Cys, had significantly increased structural stability without changing the catalytic activity and kinetic parameters of FAD-GDH, including its characteristic substrate specificity.


Subject(s)
Disulfides/chemistry , Glucose 1-Dehydrogenase/chemistry , Glucose 1-Dehydrogenase/metabolism , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Glucose 1-Dehydrogenase/genetics , Kinetics , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...