Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Nutr ; 19(1): 2, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279093

ABSTRACT

People with type 2 diabetes have a tenfold higher prevalence of hypomagnesemia, which is suggested to be caused by low dietary magnesium intake, medication use, and genetics. This study aims to identify the genetic loci that influence serum magnesium concentration in 3466 people with type 2 diabetes. The GWAS models were adjusted for age, sex, eGFR, and HbA1c. Associated traits were identified using publicly available data from GTEx consortium, a human kidney eQTL atlas, and the Open GWAS database. The GWAS identified a genome-wide significant locus in TAF3 (p = 2.9 × 10-9) in people with type 2 diabetes. In skeletal muscle, loci located in TAF3 demonstrate an eQTL link to ATP5F1C, a gene that is involved in the formation of Mg2+-ATP. Serum Mg2+ levels were associated with MUC1/TRIM46 (p = 2.9 × 10-7), SHROOM3 (p = 4.0 × 10-7), and SLC22A7 (p = 1.0 × 10-6) at nominal significance, which is in combination with the eQTL data suggesting that they are possible candidates for renal failure. Several genetic loci were in agreement with previous genomic studies which identified MUC1/TRIM46 (Pmeta = 6.9 × 10-29, PQ = 0.81) and SHROOM3 (Pmeta = 2.9 × 10-27, PQ = 0.04) to be associated with serum Mg2+ in the general population. In conclusion, serum magnesium concentrations are associated with genetic variability around the regions of TAF3, MUC1/TRIM46, SHROOM3, and SLC22A7 in type 2 diabetes.

2.
Endocr Rev ; 44(3): 357-378, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36346820

ABSTRACT

Hypomagnesemia is 10-fold more common in individuals with type 2 diabetes (T2D) than in the healthy population. Factors that are involved in this high prevalence are low Mg2+ intake, gut microbiome composition, medication use, and presumably genetics. Hypomagnesemia is associated with insulin resistance, which subsequently increases the risk to develop T2D or deteriorates glycemic control in existing diabetes. Mg2+ supplementation decreases T2D-associated features like dyslipidemia and inflammation, which are important risk factors for cardiovascular disease (CVD). Epidemiological studies have shown an inverse association between serum Mg2+ and the risk of developing heart failure (HF), atrial fibrillation (AF), and microvascular disease in T2D. The potential protective effect of Mg2+ on HF and AF may be explained by reduced oxidative stress, fibrosis, and electrical remodeling in the heart. In microvascular disease, Mg2+ reduces the detrimental effects of hyperglycemia and improves endothelial dysfunction; however, clinical studies assessing the effect of long-term Mg2+ supplementation on CVD incidents are lacking, and gaps remain on how Mg2+ may reduce CVD risk in T2D. Despite the high prevalence of hypomagnesemia in people with T2D, routine screening of Mg2+ deficiency to provide Mg2+ supplementation when needed is not implemented in clinical care as sufficient clinical evidence is lacking. In conclusion, hypomagnesemia is common in people with T2D and is involved both as cause, probably through molecular mechanisms leading to insulin resistance, and as consequence and is prospectively associated with development of HF, AF, and microvascular complications. Whether long-term supplementation of Mg2+ is beneficial, however, remains to be determined.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Risk Factors , Cardiovascular Diseases/etiology , Cardiovascular Diseases/complications , Magnesium/therapeutic use , Heart Disease Risk Factors
3.
Front Endocrinol (Lausanne) ; 13: 986616, 2022.
Article in English | MEDLINE | ID: mdl-36093068

ABSTRACT

Background: Type 2 diabetes (T2D) is characterized by a decreased insulin sensitivity. Magnesium (Mg2+) deficiency is common in people with T2D. However, the molecular consequences of low Mg2+ levels on insulin sensitivity and glucose handling have not been determined in adipocytes. The aim of this study is to determine the role of Mg2+ in the insulin-dependent glucose uptake. Methods: First, the association of low plasma Mg2+ with markers of insulin resistance was assessed in a cohort of 395 people with T2D. Secondly, the molecular role of Mg2+ in insulin-dependent glucose uptake was studied by incubating 3T3-L1 adipocytes with 0 or 1 mmol/L Mg2+ for 24 hours followed by insulin stimulation. Radioactive-glucose labelling, enzymatic assays, immunocytochemistry and live microscopy imaging were used to analyze the insulin receptor phosphoinositide 3-kinases/Akt pathway. Energy metabolism was assessed by the Seahorse Extracellular Flux Analyzer. Results: In people with T2D, plasma Mg2+ concentration was inversely associated with markers of insulin resistance; i.e., the lower Mg2+, the more insulin resistant. In Mg2+-deficient adipocytes, insulin-dependent glucose uptake was decreased by approximately 50% compared to control Mg2+condition. Insulin receptor phosphorylation Tyr1150/1151 and PIP3 mass were not decreased in Mg2+-deficient adipocytes. Live imaging microscopy of adipocytes transduced with an Akt sensor (FoxO1-Clover) demonstrated that FoxO1 translocation from the nucleus to the cytosol was reduced, indicting less Akt activation in Mg2+-deficient adipocytes. Immunocytochemistry using a Lectin membrane marker and at the membrane located Myc epitope-tagged glucose transporter 4 (GLUT4) demonstrated that GLUT4 translocation was diminished in insulin-stimulated Mg2+-deficient adipocytes compared to control conditions. Energy metabolism in Mg2+ deficient adipocytes was characterized by decreased glycolysis, upon insulin stimulation. Conclusions: Mg2+ increases insulin-dependent glucose uptake in adipocytes and suggests that Mg2+ deficiency may contribute to insulin resistance in people with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Adipocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Insulin/metabolism , Insulin/pharmacology , Magnesium , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/metabolism
4.
Sci Rep ; 12(1): 6433, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440685

ABSTRACT

In a cohort of adults with type 1 diabetes, we examined the prevalence of hypomagnesemia and the correlation of serum magnesium levels with metabolic determinants, such as glycaemic control (as HbA1c), inflammatory markers and circulating cytokines. Furthermore, we assessed if a surrogate for insulin resistance is essential for the possible association of serum magnesium with metabolic determinants. Individuals with type 1 diabetes, aged above 18 years, were included and clinical characteristics were obtained from questionnaires and clinical records. In venous blood samples we measured cytokines and adipose-tissue specific secretion proteins. Serum magnesium concentrations were measured and correlated with clinical data and laboratory measurements using univariate and multivariate regression models. Hierarchical multiple regression of serum magnesium with insulin resistance was adjusted for diabetes and potential magnesium confounders. The prevalence of hypomagnesemia (serum magnesium levels < 0.7 mmol/L) was 2.9% in a cohort consisting of 241 individuals with type 1 diabetes. The magnesium concentration in the cohort was not associated with HbA1c (r = - 0.12, P-value = 0.068) nor with any inflammatory marker or adipokine. However, insulin dose (IU/kg), a surrogate measure of resistance in type 1 diabetes, moderated the association of serum magnesium (mmol/L) with HbA1c (mmol/mol) with a B coefficient of - 71.91 (95% CI: - 119.11; -24.71), P-value = 0.003) and Log10 high-sensitivity C-reactive protein (Log10 mg/L) - 2.09 (95% CI: - 3.70; - 0.48), P-value = 0.011). The association of low serum magnesium levels with glycaemic control (HbA1c) and high-sensitivity C-reactive protein in individuals with type 1 diabetes is limited to subjects using a high insulin dose and suggests that insulin resistance, a type 2 diabetes feature, is a prerequisite for hypomagnesemia.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Adult , Aged , Biomarkers , Blood Glucose/metabolism , C-Reactive Protein , Cytokines , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/complications , Glycemic Control , Humans , Hyperglycemia/complications , Insulin , Magnesium
5.
Diabetes Care ; 44(8): 1757-1765, 2021 08.
Article in English | MEDLINE | ID: mdl-34385344

ABSTRACT

OBJECTIVE: We investigated whether serum magnesium (Mg2+) was prospectively associated with macro- or microvascular complications and mediated by glycemic control (hemoglobin A1c [HbA1c]), in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We analyzed in 4,348 participants the association of serum Mg2+ with macrovascular disease and mortality (acute myocardial infarction [AMI], coronary heart disease [CHD], heart failure [HF], cerebrovascular accident [CVA], and peripheral arterial disease [PAD]), atrial fibrillation (AF), and microvascular complications (chronic kidney disease [CKD], diabetic retinopathy, and diabetic foot) using Cox regression, adjusted for confounders. Mediation analysis was performed to assess whether HbA1c mediated these associations. RESULTS: The average baseline serum Mg2+ concentration was 0.80 ± 0.08 mmol/L. During 6.1 years of follow-up, serum Mg2+ was inversely associated with major macrovascular, 0.87 (95% CI 0.76; 1.00); HF, 0.76 (95% CI 0.62; 0.93); and AF, 0.59 (95% CI 0.49; 0.72). Serum Mg2+ was not associated with AMI, CHD, CVA, and PAD. During 5.1 years of follow-up, serum Mg2+ was inversely associated with overall microvascular events, 0.85 (95% CI 0.78; 0.91); 0.89 (95% CI 0.82; 0.96) for CKD, 0.77 (95% CI 0.61; 0.98) for diabetic retinopathy, and 0.85 (95% CI 0.78; 0.92) for diabetic foot. HbA1c mediated the associations of serum Mg2+ with HF, overall microvascular events, diabetic retinopathy, and diabetic foot. CONCLUSIONS: Serum Mg2+ concentration is inversely associated with the risk to develop HF and AF and with the occurrence of CKD, diabetic retinopathy, and foot complications in T2D. Glycemic control partially mediated the association of serum Mg2+ with HF and microvascular complications.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Heart Failure , Atrial Fibrillation/complications , Atrial Fibrillation/epidemiology , Diabetes Mellitus, Type 2/complications , Glycated Hemoglobin , Heart Failure/epidemiology , Heart Failure/etiology , Humans , Magnesium
7.
J Cachexia Sarcopenia Muscle ; 10(3): 630-642, 2019 06.
Article in English | MEDLINE | ID: mdl-30895728

ABSTRACT

BACKGROUND: Skeletal muscle is a plastic tissue that adapts to changes in exercise, nutrition, and stress by secreting myokines and myometabolites. These muscle-secreted factors have autocrine, paracrine, and endocrine effects, contributing to whole body homeostasis. Muscle dysfunction in aging sarcopenia, cancer cachexia, and diabetes is tightly correlated with the disruption of the physiological homeostasis at the whole body level. The expression levels of the myokine fibroblast growth factor 21 (FGF21) are very low in normal healthy muscles. However, fasting, ER stress, mitochondrial myopathies, and metabolic disorders induce its release from muscles. Although our understanding of the systemic effects of muscle-derived FGF21 is exponentially increasing, the direct contribution of FGF21 to muscle function has not been investigated yet. METHODS: Muscle-specific FGF21 knockout mice were generated to investigate the consequences of FGF21 deletion concerning skeletal muscle mass and force. To identify the mechanisms underlying FGF21-dependent adaptations in skeletal muscle during starvation, the study was performed on muscles collected from both fed and fasted adult mice. In vivo overexpression of FGF21 was performed in skeletal muscle to assess whether FGF21 is sufficient per se to induce muscle atrophy. RESULTS: We show that FGF21 does not contribute to muscle homeostasis in basal conditions in terms of fibre type distribution, fibre size, and muscle force. In contrast, FGF21 is required for fasting-induced muscle atrophy and weakness. The mass of isolated muscles from control-fasted mice was reduced by 15-25% (P < 0.05) compared with fed control mice. FGF21-null muscles, however, were significantly protected from muscle loss and weakness during fasting. Such important protection is due to the maintenance of protein synthesis rate in knockout muscles during fasting compared with a 70% reduction in control-fasted muscles (P < 0.01), together with a significant reduction of the mitophagy flux via the regulation of the mitochondrial protein Bnip3. The contribution of FGF21 to the atrophy programme was supported by in vivo FGF21 overexpression in muscles, which was sufficient to induce autophagy and muscle loss by 15% (P < 0.05). Bnip3 inhibition protected against FGF21-dependent muscle wasting in adult animals (P < 0.05). CONCLUSIONS: FGF21 is a novel player in the regulation of muscle mass that requires the mitophagy protein Bnip3.


Subject(s)
Fibroblast Growth Factors/metabolism , Mitophagy , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Animals , Disease Models, Animal , Fasting/adverse effects , Fibroblast Growth Factors/genetics , Humans , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/cytology , Muscular Atrophy/etiology
8.
J Biol Chem ; 293(36): 14134-14145, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30021841

ABSTRACT

Lipoprotein lipase (LPL) catalyzes the breakdown of circulating triglycerides in muscle and fat. LPL is inhibited by several proteins, including angiopoietin-like 4 (ANGPTL4), and may be cleaved by members of the proprotein convertase subtilisin/kexin (PCSK) family. Here, we aimed to investigate the cleavage of LPL in adipocytes by PCSKs and study the potential involvement of ANGPTL4. A substantial portion of LPL in mouse and human adipose tissue was cleaved into N- and C-terminal fragments. Treatment of different adipocytes with the PCSK inhibitor decanoyl-RVKR-chloromethyl ketone markedly decreased LPL cleavage, indicating that LPL is cleaved by PCSKs. Silencing of Pcsk3/furin significantly decreased LPL cleavage in cell culture medium and lysates of 3T3-L1 adipocytes. Remarkably, PCSK-mediated cleavage of LPL in adipocytes was diminished by Angptl4 silencing and was decreased in adipocytes and adipose tissue of Angptl4-/- mice. Differences in LPL cleavage between Angptl4-/- and WT mice were abrogated by treatment with decanoyl-RVKR-chloromethyl ketone. Induction of ANGPTL4 in adipose tissue during fasting enhanced PCSK-mediated LPL cleavage, concurrent with decreased LPL activity, in WT but not Angptl4-/- mice. In adipocytes, after removal of cell surface LPL by heparin, levels of N-terminal LPL were still markedly higher in WT compared with Angptl4-/- adipocytes, suggesting that stimulation of PCSK-mediated LPL cleavage by ANGPTL4 occurs intracellularly. Finally, treating adipocytes with insulin increased full-length LPL and decreased N-terminal LPL in an ANGPTL4-dependent manner. In conclusion, ANGPTL4 promotes PCSK-mediated intracellular cleavage of LPL in adipocytes, likely contributing to regulation of LPL in adipose tissue. Our data provide further support for an intracellular action of ANGPTL4 in adipocytes.


Subject(s)
Adipocytes/metabolism , Angiopoietin-Like Protein 4/physiology , Furin/metabolism , Lipoprotein Lipase/metabolism , 3T3-L1 Cells , Animals , Humans , Insulin/pharmacology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...