Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 57(37): 11957-11962, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30070756

ABSTRACT

A state-of-the-art operando spectroscopic technique is applied to Co/TiO2 catalysts, which account for nearly half of the world's transportation fuels produced by Fischer-Tropsch catalysis. This allows determination of, at a spatial resolution of approximately 50 nm, the interdependence of formed hydrocarbon species in the inorganic catalyst. Observed trends show intra- and interparticular heterogeneities previously believed not to occur in particles under 200 µm. These heterogeneities are strongly dependent on changes in H2 /CO ratio, but also on changes thereby induced on the Co and Ti valence states. We have captured the genesis of an active FTS particle over its propagation to steady-state operation, in which microgradients lead to the gradual saturation of the Co/TiO2 catalyst surface with long chain hydrocarbons (i.e., organic film formation).

2.
Phys Chem Chem Phys ; 9(27): 3570-6, 2007 Jul 21.
Article in English | MEDLINE | ID: mdl-17612722

ABSTRACT

The Fischer-Tropsch (FT) process is the heart of many natural gas conversion processes as it enables the conversion of a mixture of CO and H(2) into valuable long-chain hydrocarbons. Here we report on the use of state-of-the-art surface science techniques to obtain information on the relationship between the surface atomic structure of model catalysts and their performance in the Fischer-Tropsch reaction. Cobalt single crystals and polycrystals were modified with non-reducible oxides as to resemble industrial catalysts. Reflection absorption infrared spectroscopy was used for examining the CO adsorption behaviour at room temperature as well as at 493 K at CO pressures spanning 10(-7) to 300 mbar on both (modified) Co single/polycrystals and an industrial catalyst. Polarization modulation was applied to cancel the CO gas phase absorption. Subsequently, they were subjected to reaction tests in the same apparatus at 1 bar and 493 K. This allowed us to close the material, pressure and instrument gap in the field of Fischer-Tropsch synthesis on cobalt-based catalysts.

3.
J Am Chem Soc ; 128(12): 3956-64, 2006 Mar 29.
Article in English | MEDLINE | ID: mdl-16551103

ABSTRACT

The influence of cobalt particle size in the range of 2.6-27 nm on the performance in Fischer-Tropsch synthesis has been investigated for the first time using well-defined catalysts based on an inert carbon nanofibers support material. X-ray absorption spectroscopy revealed that cobalt was metallic, even for small particle sizes, after the in situ reduction treatment, which is a prerequisite for catalytic operation and is difficult to achieve using traditional oxidic supports. The turnover frequency (TOF) for CO hydrogenation was independent of cobalt particle size for catalysts with sizes larger than 6 nm (1 bar) or 8 nm (35 bar), while both the selectivity and the activity changed for catalysts with smaller particles. At 35 bar, the TOF decreased from 23 x 10(-3) to 1.4 x 10(-3) s(-1), while the C5+ selectivity decreased from 85 to 51 wt % when the cobalt particle size was reduced from 16 to 2.6 nm. This demonstrates that the minimal required cobalt particle size for Fischer-Tropsch catalysis is larger (6-8 nm) than can be explained by classical structure sensitivity. Other explanations raised in the literature, such as formation of CoO or Co carbide species on small particles during catalytic testing, were not substantiated by experimental evidence from X-ray absorption spectroscopy. Interestingly, we found with EXAFS a decrease of the cobalt coordination number under reaction conditions, which points to reconstruction of the cobalt particles. It is argued that the cobalt particle size effects can be attributed to nonclassical structure sensitivity in combination with CO-induced surface reconstruction. The profound influences of particle size may be important for the design of new Fischer-Tropsch catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...