Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 52(5): 488-497, 2022 May.
Article in English | MEDLINE | ID: mdl-35913106

ABSTRACT

Linzagolix is an orally available gonadotropin-releasing hormone antagonist used to treat sex-hormone-dependent diseases in women. This study aimed to investigate drug-drug interactions between linzagolix and iron/calcium ions in the intended clinical setting by conducting pharmacokinetic studies in vitro and in rats.Insoluble precipitate formation with metal ions was evaluated by measuring linzagolix concentrations in four types of bio-relevant dissolution media (fasted/fed state simulated gastric fluid and fasted/fed state simulated gastric fluid version 2), and chelate complex formation with metal ions was evaluated by release of linzagolix from a cellulose membrane sac. In these in vitro studies, linzagolix showed no potential for insoluble precipitate formation under fasted/fed conditions and no chelate complex formation in the presence of metal ions.In rats, the plasma concentration-time profiles of linzagolix and iron ion were similar regardless of whether they were administered with or without ferrous sulphate and linzagolix choline at clinically relevant doses. Thus, linzagolix and iron ion had no effect on each other's absorption in vivo.In conclusion, linzagolix is unlikely to cause clinically relevant drug-drug interactions by chelating metal ions according to the results of in vitro and in vivo studies.


Subject(s)
Calcium , Iron , Animals , Carboxylic Acids , Female , Gonadotropin-Releasing Hormone , Humans , Ions , Pyrimidines , Rats , Solubility
2.
Xenobiotica ; 49(1): 106-119, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29300135

ABSTRACT

1. The non-clinical pharmacokinetic profiles of rovatirelin, a novel thyrotropin-releasing hormone (TRH) analogue, were investigated in vivo and in vitro. 2. Rovatirelin orally administered to rats and dogs was rapidly absorbed and bioavailability was estimated to be 7.3 and 41.3%, respectively. The extent of plasma protein binding of rovatirelin in rats, dogs, and humans was low in all species (∼15%). The permeability of rovatirelin from blood to brain (permeability-surface area) ranged from 1.04 ± 0.14 to 1.29 ± 0.28 µL/min/g in rats, and rovatirelin was stable in rat plasma and brain homogenates. 3. The metabolite pattern was qualitatively similar in vitro and in vivo. In animals, rovatirelin aminopentanoic acid (rovatirelin-acid), rovatirelin aminopentanone (rovatirelin-ketone), rovatirelin pyrrolidine (4S)-hydroxy (rovatirelin-OH), (thiazoylalanyl)methylpyrrolidine (TAMP), 3-(4-thiazoyl)-l-alanine (TA), and unknown metabolites were observed. In human hepatocytes, TAMP was mainly formed and no unique human metabolite was observed. 4. The radioactivity from administered [14C]rovatirelin was predominantly excreted in faeces in rats and dogs, and almost all radioactivity was recovered 168 h after administration. Absorption, brain penetration, and stability of rovatirelin in the brain were greater than for taltirelin. 5. Thus, orally administered rovatirelin is a potentially improved treatment for spinocerebellar degeneration compared with taltirelin.


Subject(s)
Oxazolidinones/pharmacokinetics , Pyrrolidines/pharmacokinetics , Thyrotropin-Releasing Hormone/metabolism , Animals , Dogs , Humans , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...