Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Biochemistry ; 36(6): 1505-13, 1997 Feb 11.
Article in English | MEDLINE | ID: mdl-9063899

ABSTRACT

The crystal structure of ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7 was determined by multiple isomorphous replacement supplemented with anomalous scattering effects of iron atoms in the Fe-S clusters, and refined at 2.0 A resolution to a crystallographic R value of 0.173. The structural model contains a polypeptide chain of 103 amino acid residues, 2 [3Fe-4S] clusters, and 31 water molecules; in this model, the cluster corresponding to cluster II in bacterial dicluster ferredoxins loses the fourth iron atom although it may originally be a [4Fe-4S] cluster. The structure of the archaeal ferredoxin consists of two parts: the core fold part (residues 37-103) and the N-terminal extension part (residues 1-36). The "core fold" part has an overall main-chain folding common to bacterial dicluster ferredoxins, containing two clusters as the active center, two alpha-helices near the clusters, and two sheets of two-stranded antiparallel beta-sheet (the terminal and central beta-sheets). The "N-terminal extension" part is mainly formed by a one-turn alpha-helix and a three-stranded antiparallel beta-sheet. The beta-sheet in the N-terminal extension is hydrogen-bonded with the terminal beta-sheet in the core fold to form a larger beta-sheet. The distinct structural feature of this archaeal ferredoxin lies in the zinc-binding center where the zinc ion is tetrahedrally ligated by four amino acid residues (His 16, His 19, and His 34 from the N-terminal extension, and Asp 76 from the core fold). The zinc ion in the zinc-binding center is located at the interface between the core fold and the N-terminal extension, and connects the beta-sheet in the N-terminal extension and the central beta-sheet in the core fold through the zinc ligation. Thus, the zinc ion plays an important role in stabilizing the structure of the present archaeal ferredoxin by connecting the N-terminal extension and the core fold, which may be common to thermoacidophilic archaeal ferredoxins.


Subject(s)
Ferredoxins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Fourier Analysis , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Sulfolobus
SELECTION OF CITATIONS
SEARCH DETAIL
...