Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Biol Cell ; 34(11): br18, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37610834

ABSTRACT

Pattern-forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle progression and positioning of the cytokinetic ring. Here, we combined experimental and modeling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by investigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, including in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the absence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Biological Transport , Cell Division , Cytokinesis , Giant Cells , Protein Kinases , Protein Serine-Threonine Kinases
2.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37131752

ABSTRACT

Pattern forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle progression and positioning of the cytokinetic ring. Here, we combined experimental and modeling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by investigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, including in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the absence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.

3.
J Cell Biol ; 221(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34958661

ABSTRACT

Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to this size control system by forming multiprotein nodes that inhibit Wee1 at the medial cell cortex. Cdr2 node anchoring at the cell cortex is not fully understood. Through a genomic screen, we identified the conserved GTPase Arf6 as a component of Cdr2 signaling. Cells lacking Arf6 failed to divide at a threshold surface area and instead shifted to volume-based divisions at increased overall size. Arf6 stably localized to Cdr2 nodes in its GTP-bound but not GDP-bound state, and its guanine nucleotide exchange factor (GEF), Syt22, was required for both Arf6 node localization and proper size at division. In arf6Δ mutants, Cdr2 nodes detached from the membrane and exhibited increased dynamics. These defects were enhanced when arf6Δ was combined with other node mutants. Our work identifies a regulated anchor for Cdr2 nodes that is required for cells to sense surface area.


Subject(s)
ADP-Ribosylation Factor 6/metabolism , Cell Division , Cell Size , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Cytokinesis
4.
J Cell Biol ; 219(8)2020 08 03.
Article in English | MEDLINE | ID: mdl-32421151

ABSTRACT

Protein kinases direct polarized growth by regulating the cytoskeleton in time and space and could play similar roles in cell division. We found that the Cdc42-activated polarity kinase Pak1 colocalizes with the assembling contractile actomyosin ring (CAR) and remains at the division site during septation. Mutations in pak1 led to defects in CAR assembly and genetic interactions with cytokinesis mutants. Through a phosphoproteomic screen, we identified novel Pak1 substrates that function in polarized growth and cytokinesis. For cytokinesis, we found that Pak1 regulates the localization of its substrates Mid1 and Cdc15 to the CAR. Mechanistically, Pak1 phosphorylates the Mid1 N-terminus to promote its association with cortical nodes that act as CAR precursors. Defects in Pak1-Mid1 signaling lead to misplaced and defective division planes, but these phenotypes can be rescued by synthetic tethering of Mid1 to cortical nodes. Our work defines a new signaling mechanism driven by a cell polarity kinase that promotes CAR assembly in the correct time and place.


Subject(s)
Cytokinesis , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , p21-Activated Kinases/metabolism , Actomyosin/genetics , Actomyosin/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Mutation , Phosphorylation , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction , Time Factors , p21-Activated Kinases/genetics
5.
Mol Biol Cell ; 30(25): 3015-3023, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31644361

ABSTRACT

To enter into mitosis, cells must shut off the cell cycle inhibitor Wee1. SAD family protein kinases regulate Wee1 signaling in yeast and humans. In Schizosaccharomyces pombe, two SAD kinases (Cdr1/Nim1 and Cdr2) act as upstream inhibitors of Wee1. Previous studies found that S. pombe Cdr1/Nim1 directly phosphorylates and inhibits Wee1 in vitro, but different results were obtained for budding yeast and human SAD kinases. Without a full understanding of Cdr1 action on Wee1, it has been difficult to assess the in vivo relevance and conservation of this mechanism. Here, we show that both Cdr1 and Cdr2 promote Wee1 phosphorylation in cells, but only Cdr1 inhibits Wee1 kinase activity. Inhibition occurs when Cdr1 phosphorylates a cluster of serine residues linking α-helices G and H of the Wee1 kinase domain. This region is highly divergent among different Wee1 proteins, consistent with distinct regulatory mechanisms. A wee(4A) mutant that impairs phosphorylation by Cdr1 delays mitotic entry and causes elongated cells. By disrupting and retargeting Cdr1 localization, we show that Cdr1 inhibition of Wee1 occurs in cells at cortical nodes formed by Cdr2. On the basis of our results, we propose a two-step model for inhibition of Wee1 by Cdr1 and Cdr2 at nodes.


Subject(s)
Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , CDC2 Protein Kinase/metabolism , Cell Cycle , Mitosis/physiology , Nuclear Proteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Protein Transport , Schizosaccharomyces/metabolism
6.
Elife ; 82019 05 03.
Article in English | MEDLINE | ID: mdl-31050341

ABSTRACT

Control of cell size requires molecular size sensors that are coupled to the cell cycle. Rod-shaped fission yeast cells divide at a threshold size partly due to Cdr2 kinase, which forms nodes at the medial cell cortex where it inhibits the Cdk1-inhibitor Wee1. Pom1 kinase phosphorylates and inhibits Cdr2, and forms cortical concentration gradients from cell poles. Pom1 inhibits Cdr2 signaling to Wee1 specifically in small cells, but the time and place of their regulatory interactions were unclear. We show that Pom1 forms stable oligomeric clusters that dynamically sample the cell cortex. Binding frequency is patterned into a concentration gradient by the polarity landmarks Tea1 and Tea4. Pom1 clusters colocalize with Cdr2 nodes, forming a glucose-modulated inhibitory threshold against node activation. Our work reveals how Pom1-Cdr2-Wee1 operates in multiprotein clusters at the cortex to promote mitotic entry at a cell size that can be modified by nutrient availability.


Subject(s)
Cytoplasm/enzymology , Protein Kinases/metabolism , Protein Multimerization , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Cell Cycle Proteins/metabolism , Cell Membrane/metabolism , Glucose/metabolism , Mitosis , Protein Binding , Protein Kinases/analysis , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/analysis
7.
J Cell Biol ; 217(5): 1589-1599, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29514920

ABSTRACT

Cell size control requires mechanisms that link cell growth with Cdk1 activity. In fission yeast, the protein kinase Cdr2 forms cortical nodes that include the Cdk1 inhibitor Wee1 along with the Wee1-inhibitory kinase Cdr1. We investigated how nodes inhibit Wee1 during cell growth. Biochemical fractionation revealed that Cdr2 nodes were megadalton structures enriched for activated Cdr2, which increases in level during interphase growth. In live-cell total internal reflection fluorescence microscopy videos, Cdr2 and Cdr1 remained constant at nodes over time, but Wee1 localized to nodes in short bursts. Recruitment of Wee1 to nodes required Cdr2 kinase activity and the noncatalytic N terminus of Wee1. Bursts of Wee1 localization to nodes increased 20-fold as cells doubled in size throughout G2. Size-dependent signaling was caused in part by the Cdr2 inhibitor Pom1, which suppressed Wee1 node bursts in small cells. Thus, increasing Cdr2 activity during cell growth promotes Wee1 localization to nodes, where inhibitory phosphorylation of Wee1 by Cdr1 and Cdr2 kinases promotes mitotic entry.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Size , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Cell Cycle Proteins/chemistry , Models, Biological , Nuclear Proteins/chemistry , Phosphorylation , Protein Binding , Protein Kinases/metabolism , Protein Transport , Protein-Tyrosine Kinases/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Time-Lapse Imaging
8.
J Biol Chem ; 292(45): 18457-18468, 2017 11 10.
Article in English | MEDLINE | ID: mdl-28924043

ABSTRACT

Environmental conditions modulate cell cycle progression in many cell types. A key component of the eukaryotic cell cycle is the protein kinase Wee1, which inhibits the cyclin-dependent kinase Cdk1 in yeast through human cells. In the fission yeast Schizosaccharomyces pombe, the protein kinase Cdr1 is a mitotic inducer that promotes mitotic entry by phosphorylating and inhibiting Wee1. Cdr1 and Wee1 both localize to punctate structures, termed nodes, on the medial cortex, but it has been unknown whether node localization can be altered by physiological signals. Here we investigated how environmental conditions regulate Cdr1 signaling for cell division. Osmotic stress induced hyperphosphorylation of the mitotic inducer Cdr1 for several hours, and cells delayed division for the same time period. This stress-induced hyperphosphorylation required both Cdr1 autophosphorylation and the stress-activated protein kinase Sty1. During osmotic stress, Cdr1 exited cortical nodes and localized in the cytoplasm. Using a series of truncation mutants, we mapped a C-terminal domain that is necessary and sufficient for Cdr1 node localization and found that Sty1 directly phosphorylates this domain in vitro Sty1 was not required for Cdr1 exit from nodes, indicating the existence of additional regulatory signals. Both Cdr1 phosphorylation and node localization returned to basal levels when cells adapted to osmotic conditions and resumed cell cycle progression. In summary, we identified a mechanism that prevents Cdr1 colocalization with its inhibitory target Wee1 during osmotic stress. Dynamic regulation of protein localization to cortical nodes might represent a strategy to modulate entry into mitosis under differing environmental conditions.


Subject(s)
Cytoplasm/enzymology , Mitogen-Activated Protein Kinases/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Stress, Physiological , Up-Regulation , Amino Acid Substitution , Cytoplasm/metabolism , Gene Deletion , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mitosis , Mutagenesis, Site-Directed , Mutation , Osmotic Pressure , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphorylation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Transport , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/growth & development , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics
9.
mBio ; 7(5)2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27677791

ABSTRACT

Proteins containing polyglutamine (polyQ) regions are found in almost all eukaryotes, albeit with various frequencies. In humans, proteins such as huntingtin (Htt) with abnormally expanded polyQ regions cause neurodegenerative diseases such as Huntington's disease (HD). To study how the presence of endogenous polyQ aggregation modulates polyQ aggregation and toxicity, we expressed polyQ expanded Htt fragments (polyQ Htt) in Schizosaccharomyces pombe In stark contrast to other unicellular fungi, such as Saccharomyces cerevisiae, S. pombe is uniquely devoid of proteins with more than 10 Q repeats. We found that polyQ Htt forms aggregates within S. pombe cells only with exceedingly long polyQ expansions. Surprisingly, despite the presence of polyQ Htt aggregates in both the cytoplasm and nucleus, no significant growth defect was observed in S. pombe cells. Further, PCR analysis showed that the repetitive polyQ-encoding DNA region remained constant following transformation and after multiple divisions in S. pombe, in contrast to the genetic instability of polyQ DNA sequences in other organisms. These results demonstrate that cells with a low content of polyQ or other aggregation-prone proteins can show a striking resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the evolutionary emergence and exclusion of polyQ expansion proteins in different organisms. IMPORTANCE: Polyglutamine (polyQ) proteins encoded by repetitive CAG DNA sequences serve a variety of normal biological functions. Yet some proteins with abnormally expanded polyQ regions cause neurodegeneration through unknown mechanisms. To study how distinct cellular environments modulate polyQ aggregation and toxicity, we expressed CAG-expanded huntingtin fragments in Schizosaccharomyces pombe In stark contrast to many other eukaryotes, S. pombe is uniquely devoid of proteins containing long polyQ tracts. Our results show that S. pombe cells, despite their low content of endogenous polyQ proteins, exhibit striking and unexpected resilience with respect to polyQ toxicity and that genetic instability of repetitive DNA sequences may have played an important role in the emergence and expansion of polyQ domains in eukaryotic evolution.

10.
Appl Environ Microbiol ; 79(16): 4821-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23747699

ABSTRACT

Water is a major route for infection of humans by exotoxin-producing bacteria, including Shiga toxin-producing Escherichia coli (STEC). While STEC has the potential to be present in nearly every type of water source, its distribution is sporadic, and an understanding of factors that govern its emergence and persistence within water is lacking. In this study, we examined the influence of microbe content on STEC persistence in freshwater. We found that depletion of microbes in the water leads to a considerable increase in the persistence of STEC, an effect that can be mitigated by adding grazing protists to the water. STEC strains appear to be more resistant to the impact of grazing protists than E. coli strains that lack the Shiga toxin (stx) gene. Our results demonstrate that the microcosm can dramatically influence the persistence of STEC in aquatic ecosystems and that the overall impact by microbes on STEC strains is fundamentally different from that of non-STEC strains of bacteria. Overall, these results provide insight into why STEC and possibly other exotoxin-producing bacterial pathogens display such variability in abundance, distribution, and persistence in aquatic ecosystems.


Subject(s)
Escherichia coli Proteins/genetics , Food Chain , Fresh Water/microbiology , Shiga Toxins/genetics , Shiga-Toxigenic Escherichia coli/physiology , Colony Count, Microbial , Escherichia coli Proteins/metabolism , Pennsylvania , Polymerase Chain Reaction , Shiga Toxins/metabolism , Shiga-Toxigenic Escherichia coli/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...