Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(11): 4788-4797, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804207

ABSTRACT

We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements in disks, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates toward the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral toward a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly periodic dynamics. Comparing experimental data to a theoretical model of an active nematic reveals that theory captures the fast procession of a pair of [Formula: see text] defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering 2D autonomous flows.

2.
Phys Rev E ; 97(1-1): 012702, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448352

ABSTRACT

Confining a liquid crystal imposes topological constraints on the orientational order, allowing global control of equilibrium systems by manipulation of anchoring boundary conditions. In this article, we investigate whether a similar strategy allows control of active liquid crystals. We study a hydrodynamic model of an extensile active nematic confined in containers, with different anchoring conditions that impose different net topological charges on the nematic director. We show that the dynamics are controlled by a complex interplay between topological defects in the director and their induced vortical flows. We find three distinct states by varying confinement and the strength of the active stress: A topologically minimal state, a circulating defect state, and a turbulent state. In contrast to equilibrium systems, we find that anchoring conditions are screened by the active flow, preserving system behavior across different topological constraints. This observation identifies a fundamental difference between active and equilibrium materials.

3.
IUCrJ ; 2(Pt 5): 601, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26306201

ABSTRACT

The name of one of the authors in the article by Heymann et al. [(2014), IUCrJ, 1, 349-360] is corrected.[This corrects the article DOI: 10.1107/S2052252514016960.].

SELECTION OF CITATIONS
SEARCH DETAIL
...