Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Chem ; 11: 969865, 2023.
Article in English | MEDLINE | ID: mdl-36846855

ABSTRACT

We used humic and fulvic acids extracted from digestate to formulate nanohybrids with potential applications in agronomy. In order to obtain a synergic co-release of plant-beneficial agents, we functionalized with humic substances two inorganic matrixes: hydroxyapatite (Ca10(PO4)6(OH)2, HP) and silica (SiO2) nanoparticles (NPs). The former is a potential controlled-release fertilizer of P, and the latter has a beneficial effect on soil and plants. SiO2 NPs are obtained from rice husks by a reproducible and fast procedure, but their ability to absorb humic substances is very limited. HP NPs coated with fulvic acid are instead a very promising candidate, based on desorption and dilution studies. The different dissolutions observed for HP NPs coated with fulvic and humic acids could be related to the different interaction mechanisms, as suggested by the FT-IR study.

2.
Dalton Trans ; 51(15): 5818-5827, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35343559

ABSTRACT

This manuscript reports four new gold(I)-silver(I) complexes with 2-(2-pyridyl)-1,8-naphthyridine (pyNP) and terpyridine (terpy) as ancillary ligands, having formulae [Ag(pyNP)(Au(CN)2)]2 (1), [Ag2Au2(µ-CN)2(CN)2(pyNP)2] (2), [Ag2Au(µ-CN)2(terpy)2][Au(CN)2] (3) and [Ag4Au4(µ-CN)8(terpy)2(py)] (4). Complexes 1 and 2 are structural isomers obtained from different solvents. The Au(CN)2- anion is not coordinated and establishes intramolecular Au⋯Ag,Ag interactions in 1. In contrast, it is monocoordinated to silver atoms via a CN fragment in compound 2 and no metallophilic interaction is observed. In compound 3, one Au(CN)2 anion bridges two Ag(terpy) fragments. In this complex an infinite array of gold atoms is found, exhibiting aurophilic interactions of 3.415 Å. In complex 4 the 3D architecture observed in the crystal packing is driven by Au⋯Au and Au⋯Ag metallophilic interactions. All compounds have been structurally and vibrationally characterized to better understand the crystal forces. In addition, a solution chemistry study in different solvents by ESI-MS spectrometry was performed to comprehend the speciation and solvent effects. Finally, DFT calculations were carried out to analyze the Ag⋯Au interactions and also the π-stacking interactions that are relevant in the crystal packing of some structures. Special attention has been paid to the bifurcated nature of the Au⋯Ag,Ag interactions in compound 1 that has been analyzed theoretically using the quantum theory of atoms-in-molecules (QTAIM) and the Natural Bond Orbital (NBO) computational tools.

3.
Dalton Trans ; 51(13): 5296-5308, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35293407

ABSTRACT

Mixed mercury(II) halogenides have been known for a long time as good NLO (non-linear optic) materials. The NLO properties are due to the halogen disposition in the solid state and the electron distribution among the bonds formed by soft elements. We investigated the possibility of using HgBrI as a asymmetric tecton in the preparation of noncentrosymmetric crystalline compounds, by exploiting the coordinating power of Hg(II) toward N-donor ligands, and seven coordination complexes have been obtained. To unravel the nature of these complex systems we combined the data from different techniques: Raman spectroscopy, SC-XRD and Second Harmonic Generation, supported by a periodic DFT computational approach. In HgBrI crystalline products with low symmetry, the presence of substitutional disorder leads to a lack of the inversion center conferring NLO activity, which is absent in analogous complexes of Hg(II) halogenides. These results indicate HgBrI as an interesting tecton to obtain metallorganic NLO materials.

4.
Molecules ; 26(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34641589

ABSTRACT

Pristine high-density bulk disks of MgB2 with added hexagonal BN (10 wt.%) were prepared using spark plasma sintering. The BN-added samples are machinable by chipping them into desired geometries. Complex shapes of different sizes can also be obtained by the 3D printing of polylactic acid filaments embedded with MgB2 powder particles (10 wt.%). Our present work aims to assess antimicrobial activity quantified as viable cells (CFU/mL) vs. time of sintered and 3D-printed materials. In vitro antimicrobial tests were performed against the bacterial strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, Enterococcus faecium DSM 13590, and Enterococcus faecalis ATCC 29212; and the yeast strain Candida parapsilosis ATCC 22019. The antimicrobial effects were found to depend on the tested samples and microbes, with E. faecium being the most resistant and E. coli the most susceptible.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Boron Compounds/pharmacology , Fungi/drug effects , Magnesium Compounds/pharmacology , Candida parapsilosis/drug effects , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Polyesters/pharmacology , Printing, Three-Dimensional , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
5.
Molecules ; 26(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34443553

ABSTRACT

We report for the first time on the antimicrobial activity of MgB2 powders produced via the Reactive Liquid Infiltration (RLI) process. Samples with MgB2 wt.% ranging from 2% to 99% were obtained and characterized, observing different levels of grain aggregation and of impurity phases. Their antimicrobial activity was tested against Staphylococcus aureus ATCC BAA 1026, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. A general correlation is observed between the antibacterial activity and the MgB2 wt.%, but the sample microstructure also appears to be very important. RLI-MgB2 powders show better performances compared to commercial powders against microbial strains in the planktonic form, and their activity against biofilms is also very similar.

6.
Inorg Chem ; 59(1): 203-213, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31846320

ABSTRACT

The behavior in solution of the dicyanoaurate anion in the presence of other metal centers has so far been little explored, despite its importance in material science. The design and synthesis of systems with controlled coordination behavior, using chelating ligands and ZnII, has allowed us to detect self-assembly and oligomerization in solution. This phenomenon has been studied with 13C and 1H NMR, absorption and emission UV-vis spectroscopy, ESI-MS, and XAS at both the Au L3-edge and Zn K-edge: all of these techniques confirm the presence of Au-Zn aggregation products. These fragments, resembling structural units in the solid state, reveal that coordination of dicyanoaurate to free sites around metal centers can occur at a lower concentration than those at which crystals start to form and at which aurophilic interactions are observed, forming the connection between solution species and solid-state architectures.

7.
Sci Rep ; 7(1): 9066, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831111

ABSTRACT

X-ray nanofabrication has so far been usually limited to mask methods involving photoresist impression and subsequent etching. Herein we show that an innovative maskless X-ray nanopatterning approach allows writing electrical devices with nanometer feature size. In particular we fabricated a Josephson device on a Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide micro-crystal by drawing two single lines of only 50 nm in width using a 17.4 keV synchrotron nano-beam. A precise control of the fabrication process was achieved by monitoring in situ the variations of the device electrical resistance during X-ray irradiation, thus finely tuning the irradiation time to drive the material into a non-superconducting state only in the irradiated regions, without significantly perturbing the crystal structure. Time-dependent finite element model simulations show that a possible microscopic origin of this effect can be related to the instantaneous temperature increase induced by the intense synchrotron picosecond X-ray pulses. These results prove that a conceptually new patterning method for oxide electrical devices, based on the local change of electrical properties, is actually possible with potential advantages in terms of heat dissipation, chemical contamination, miniaturization and high aspect ratio of the devices.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 5): 702-708, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27698310

ABSTRACT

High-Tc superconducting cuprates (HTSC) such as YBa2Cu3O7 - x (YBCO) are promising candidates for solid-state THz applications based on stacks of intrinsic Josephson junctions (IJJs) with atomic thickness. In view of future exploitation of IJJs, high-quality superconducting YBCO tape-like single crystals (whiskers) have been synthesized from Ca-Al-doped precursors in the presence of Te. The main aim of this paper is to determine the importance of the simultaneous use of Al, Te and Ca in promoting YBCO whiskers growth with good superconducting properties (Tc = 79-84 K). Further, single-crystal X-ray diffraction (SC-XRD) refinements of tetragonal YBCO whiskers (P4/mmm) are reported to fill the literature lack of YBCO structure investigations. All the as-grown whiskers have also been investigated by means of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Our results demonstrate that the interplay of Ca, Te and Al elements is clearly necessary in order to obtain superconducting YBCO whiskers. The data obtained from SC-XRD analyses confirm the highly crystalline nature of the whiskers grown. Ca and Al enter the structure by replacing the Y and the octahedral coordinated Cu1 site, respectively, as in other similar orthorhombic compounds, while Te does not enter the structure of whiskers but its presence in the precursor is essential to the growth of the crystals.

9.
Nano Lett ; 16(3): 1669-74, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26814601

ABSTRACT

We describe the first use of a novel photoresist-free X-ray nanopatterning technique to fabricate an electronic device. We have produced a proof-of-concept device consisting of a few Josephson junctions by irradiating microcrystals of the Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide with a 17.6 keV synchrotron nanobeam. Fully functional devices have been obtained by locally turning the material into a nonsuperconducting state by means of hard X-ray exposure. Nano-XRD patterns reveal that the crystallinity is substantially preserved in the irradiated areas that there is no evidence of macroscopic crystal disruption. Indications are that O ions have been removed from the crystals, which could make this technique interesting also for other oxide materials. Direct-write X-ray nanopatterning represents a promising fabrication method exploiting material/material rather than vacuum/material interfaces, with the potential for nanometric resolution, improved mechanical stability, enhanced depth of patterning, and absence of chemical contamination with respect to traditional lithographic techniques.

10.
Chemistry ; 21(44): 15826-34, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26345356

ABSTRACT

The X-ray irradiation of binary mixtures of alkyl iodides R-I (R=CH3 , C2 H5 , or i-C3 H7 radicals) and NF3 produces R-NF2 and R-F. Based on calculations performed at the CCSD(T), MRCI(SD+Q), G3B3, and G3 levels of theory, the former product arises from a bimolecular homolytic substitution reaction (SH 2) by the alkyl radicals R, which attack the N atom of NF3 . This mechanism is consistent with the suppression of R-NF2 by addition of O2 (an efficient alkyl radical scavenger) to the reaction mixture. The R-F product arises from the attack of R to the F atom of NF3 , but additional contributing channels are conceivably involved. The F-atom abstraction is, indeed, considerably more exothermic than the SH 2 reaction, but the involved energy barriers are comparable, and the two processes are comparably fast.

11.
Article in English | MEDLINE | ID: mdl-24675593

ABSTRACT

Al(+3)-doped (Y,Ca)Ba2Cu3O(7-y) (YBCO) whiskers have been synthesized using a solid-state reaction technique. These materials are promising candidates for solid-state THz applications based on sequences of Josephson Junctions (IJJs). Alumina addition was systematically varied and the effect of aluminium incorporation on the structure has been investigated using single-crystal X-ray diffraction. Aluminium only replaces Cu atoms in the O-Cu-O-Cu chains and a gradual transition from orthorhombic to tetragonal space group occurs, thus increasing the Al content. A gradual modification of the coordination sphere of the copper site has also been observed. The Ca(2+) ion substitutes mainly the Y(3+) ion and also, to a small extent, the Ba(2+) ion.

12.
Chemistry ; 17(38): 10682-9, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21826753

ABSTRACT

The xenon-difluoronitrenium ion F(2)N-Xe(+) , a novel xenon-nitrogen species, was obtained in the gas phase by the nucleophilic displacement of HF from protonated NF(3) by Xe. According to Møller-Plesset (MP2) and CCSD(T) theoretical calculations, the enthalpy and Gibbs energy changes (ΔH and ΔG) of this process are predicted to be -3 kcal mol(-1) . The conceivable alternative formation of the inserted isomers FN-XeF(+) is instead endothermic by approximately 40-60 kcal mol(-1) and is not attainable under the employed ion-trap mass spectrometric conditions. F(2)N-Xe(+) is theoretically characterized as a weak electrostatic complex between NF(2)(+) and Xe, with a Xe-N bond length of 2.4-2.5 Å, and a dissociation enthalpy and free energy into its constituting fragments of 15 and 8 kcal mol(-1), respectively. F(2)N-Xe(+) is more fragile than the xenon-nitrenium ions (FO(2)S)(2)NXe(+), F(5)SN(H)Xe(+), and F(5)TeN(H)Xe(+) observed in the condensed phase, but it is still stable enough to be observed in the gas phase. Other otherwise elusive xenon-nitrogen species could be obtained under these experimental conditions.


Subject(s)
Gases/chemistry , Nitrogen/chemistry , Xenon/chemistry , Ions/chemistry , Models, Theoretical , Thermodynamics
13.
J Mass Spectrom ; 46(5): 465-77, 2011 May.
Article in English | MEDLINE | ID: mdl-21500305

ABSTRACT

The gas-phase ion chemistry of GeF(4) and of its mixtures with water, ammonia and hydrocarbons was investigated by ion trap mass spectrometry (ITMS) and ab initio calculations. Under ITMS conditions, the only fragment detected from ionized GeF(4) is GeF(3)(+). This cation is a strong Lewis acid, able to react with H(2)O, NH(3) and the unsaturated C(2)H(2), C(2)H(4) and C(6)H(6) by addition-HF elimination reactions to form F(2)Ge(XH)(+), FGe(XH)(2)(+), Ge(XH)(3)(+) (X = OH or NH(2)), F(2)GeC(2)H(+), F(2)GeC(2)H(3)(+) and F(2)GeC(6)H(5)(+). The structure, stability and thermochemistry of these products and the mechanistic aspects of the exemplary reactions of GeF(3)(+) with H(2)O, NH(3) and C(6)H(6) were investigated by MP2 and coupled cluster calculations. The experimental proton affinity (PA) and gas basicity (GB) of GeF(4) were estimated as 121.5 ± 6.0 and 117.1 ± 6.0 kcal mol(-1), respectively, and GeF(4)H(+) was theoretically characterized as an ion-dipole complex between GeF(3)(+) and HF. Consistently, it reacts with simple inorganic and organic molecules to form GeF(3)(+)-L complexes (L = H(2)O, NH(3), C(2)H(2), C(2)H(4), C(6)H(6), CO(2), SO(2) and GeF(4)). The theoretical investigation of the stability of these ions with respect to GeF(3)(+) and L disclosed nearly linear correlations between their dissociation enthalpies and free energies and the PA and GB of L. Comparing the behavior of GeF(3)(+) with the previously investigated CF(3)(+) and SiF(3)(+) revealed a periodically reversed order of reactivity CF(3)(+) < GeF(3)(+) < SiF(3)(+). This parallels the order of the Lewis acidities of the three cations.

14.
J Mass Spectrom ; 44(9): 1348-58, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19618400

ABSTRACT

The gas-phase reaction of CH(3)(+) with NF(3) was investigated by ion trap mass spectrometry (ITMS). The observed products include NF(2)(+) and CH(2)F(+). Under the same experimental conditions, SiH(3)(+) reacts with NF(3) and forms up to six ionic products, namely (in order of decreasing efficiency) NF(2)(+), SiH(2)F(+), SiHF(2)(+), SiF(+), SiHF(+), and NHF(+). The GeH(3)(+) cation is instead totally unreactive toward NF(3). The different reactivity of XH(3)(+) (X = C, Si, Ge) toward NF(3) has been rationalized by ab initio calculations performed at the MP2 and coupled cluster level of theory. In the reaction of both CH(3)(+) and SiH(3)(+), the kinetically relevant intermediate is the fluorine-coordinated isomer H(3)X-F-NF(2)(+) (X = C, Si). This species forms from the exoergic attack of XH(3)(+) to one of the F atoms of NF(3) and undergoes dissociation and isomerization processes which eventually result in the experimentally observed products. The nitrogen-coordinated isomers H(3)X-NF(3)(+) (X = C, Si) were located as minimum-energy structures but do not play an active role in the reaction mechanism. The inertness of GeH(3)(+) toward NF(3) is also explained by the endoergic character of the dissociation processes involving the H(3)Ge-F-NF(2)(+) isomer.

15.
Eur J Mass Spectrom (Chichester) ; 15(2): 209-20, 2009.
Article in English | MEDLINE | ID: mdl-19423906

ABSTRACT

The positive ion chemistry occurring in silane/nitrogen trifluoride gaseous mixtures has been investigated by ion trap mass spectrometry. Reaction sequences and rate constants have been determined for the processes involving the primary ions SiH(n)(+) (n = 0-3) and NF(x)(+) (x = 1-3) and the secondary ions obtained from their reactions with SiH(4) and NF(3). The SiH(n)(+) efficiently react with NF(3) and undergo cascades of abstraction and scrambling reactions which form the fluorinated and perfluorinated cations SiHF(m)(+) (m = 1, 2), SiH(2)F(+) and SiF(x)(+) (x = 0-3). Fluorinated Si(2)- clusters such as Si(2)H(2)F(+), Si(2)H(3)F(+) and Si(2)H(5)F(+) were also observed. The reaction of both SiH(3)(+) and SiH(2)F(+) with NF(3) produces the elusive fluoronitrenium ion NHF(+). Any NF(x)(+) reacts with SiH(4) mainly by charge transfer. Additional ionic products are, however, observed which suggest intimate reaction complexes. Worth mentioning is the formation of SiNH(2)(+) from the reaction of both NF(+) and NHF(+) with SiH(4). The primary ions NF(2)(+) and SiH(2)(+) are also "sink" species in our observed chemistry.

16.
J Mass Spectrom ; 44(5): 725-34, 2009 May.
Article in English | MEDLINE | ID: mdl-19160450

ABSTRACT

The gas phase ion chemistry of silane/hydrogen sulfide and germane/hydrogen sulfide mixtures was studied by ion trap mass spectrometry (ITMS), in both positive and negative ionization mode. In positive ionization, formation of X/S (X = Si, Ge) mixed ions mainly takes place via reactions of silane or germane ions with H(2)S, through condensation followed by dehydrogenation. This is particularly evident in the system with silane. On the other side, reactions of H(n)S(2)(+) ions with XH(4) (X = Si, Ge) invariably lead to formation of a single X-S bond. In negative ionization, a more limited number of mixed ion species is detected, but their overall abundance reaches appreciable values, especially in the SiH(4)/H(2)S system. Present results clearly indicate that ion processes play an important role in formation and growth of clusters eventually leading to deposition of amorphous solids in chemical vapor deposition (CVD) processes.

17.
Eur J Mass Spectrom (Chichester) ; 13(6): 377-84, 2007.
Article in English | MEDLINE | ID: mdl-18417758

ABSTRACT

The gas phase ion-molecule reactions in positively and negatively ionized germane/diborane mixtures have been studied by ion trap mass spectrometry. Reaction sequences and rate constants for the most interesting processes have been determined. In positive ionization, formation of Ge-B bonds exclusively occurs through condensation reactions of B(n)H(m)(+) ions with germane, followed by H(2) or BH(3) loss. No reactions of ions from germane with B(2)H(6) were observed under the experimental conditions used here. In negative ionization, the Ge(n)H(m)(-) (n = 1, 2) ion families react with diborane to yield the Ge(n)B(p)H(q)(-) (p = 1, 2) ions, again via dehydrogenation and BH(3) loss, while diborane anions proved to be unreactive. In both positive and negative ionization, Ge-B ions reach appreciable abundances. The present results afford fundamental information about the intrinsic reactivity of gas-phase ions and provide valuable indications about the first nucleation steps ultimately leading to amorphous Ge and B-doped semiconductor materials by chemical vapor deposition methods.

18.
Rapid Commun Mass Spectrom ; 20(18): 2696-700, 2006.
Article in English | MEDLINE | ID: mdl-16912981

ABSTRACT

Silicon clusters are of considerable interest for their importance in astrophysics and chemical vapour deposition processes, as well as from a fundamental point of view. Here, we present a quadrupole ion trap study of the self-condensation ion/molecule reactions of anions of silane. In the high-pressure regime, several ion clusters are formed with increasing size: the largest ions detected are Si5Hn- (n = 0-3). Selective ion isolation and storage allowed detection of the main reaction sequences occurring in the reacting system. The most frequent condensation step is followed by single or multiple dehydrogenation, this latter being particularly observed for the high-mass reactant ions. As a consequence, the most abundant ions in the mass spectra are those with a low content of hydrogen, namely Si2H-, Si3H-, and Si4H-. These results are discussed with reference to literature data on silicon cluster anions and related systems.

19.
Mass Spectrom Rev ; 25(3): 483-513, 2006.
Article in English | MEDLINE | ID: mdl-16365877

ABSTRACT

This review essentially deals with positive ion/molecule reactions occurring in gas-phase organometallic systems, and encompasses a period of time of approximately 7 years, going from 1997 to early 2004. Following the example of the excellent review by Eller & Schwarz (1991; Chem Rev 91:1121-1177), in the first part, results of reaction of naked ions are presented by grouping them according to the neutral substrate, while in the second part, ligated ions are grouped according to the different ligands. Whenever possible, comparison among similar studies is attempted, and general trends of reactivities are evidenced.

20.
J Mass Spectrom ; 40(5): 591-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15724272

ABSTRACT

The gas-phase ion chemistry of silane-allene-ammonia, germane-allene (or propyne)-ammonia (or phosphine) systems was studied by ion trap mass spectrometry. Reaction sequences were determined and rate constants were measured for the main processes observed. The mixture containing silane displays higher reactivity with respect to that with germane. Comparison with analogous systems provides useful information about the reactivity of different hydrocarbon molecules and the different affinities of silicon and germanium towards nitrogen and phosphorus. The most interesting product ions observed are those containing Si (or Ge), C and N (or P) elements together, as these ion species may be considered precursors of doped amorphous carbides, which are widely used in semiconductor devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...