Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(3-1): 032601, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33862772

ABSTRACT

The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial structure. Based on linear stability analyses, time simulations, and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore, for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is modified by activity. Morphological phase diagrams showing the regions of existence of various solution types are presented merging the results from all the analysis tools employed. We also study how activity influences the crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple PFC model for active crystals and swarm formation provides a clear general understanding of the observed multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.

2.
Chaos ; 30(12): 123149, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33380045

ABSTRACT

The active Phase-Field-Crystal (aPFC) model combines elements of the Toner-Tu theory for self-propelled particles and the classical Phase-Field-Crystal (PFC) model that describes the transition between liquid and crystalline phases. In the liquid-crystal coexistence region of the PFC model, crystalline clusters exist in the form of localized states that coexist with a homogeneous background. At sufficiently strong activity (related to self-propulsion strength), they start to travel. We employ numerical path continuation and direct time simulations to first investigate the existence regions of different types of localized states in one spatial dimension. The results are summarized in morphological phase diagrams in the parameter plane spanned by activity and mean density. Then we focus on the interaction of traveling localized states, studying their collision behavior. As a result, we distinguish "elastic" and "inelastic" collisions. In the former, localized states recover their properties after a collision, while in the latter, they may completely or partially annihilate, forming resting bound states or various traveling states.

3.
Phys Rev E ; 98(2-1): 022608, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253633

ABSTRACT

The conserved Swift-Hohenberg equation (or phase-field-crystal [PFC] model) provides a simple microscopic description of the thermodynamic transition between fluid and crystalline states. Combining it with elements of the Toner-Tu theory for self-propelled particles, Menzel and Löwen [Phys. Rev. Lett. 110, 055702 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.055702] obtained a model for crystallization (swarm formation) in active systems. Here, we study the occurrence of resting and traveling localized states, i.e., crystalline clusters, within the resulting active PFC model. Based on linear stability analyses and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of periodic and localized, resting and traveling states in a one-dimensional active PFC model. This allows us, for instance, to explore how the slanted homoclinic snaking of steady localized states found for the passive PFC model is amended by activity. A particular focus lies on the onset of motion, where we show that it occurs either through a drift-pitchfork or a drift-transcritical bifurcation. A corresponding general analytical criterion is derived.

SELECTION OF CITATIONS
SEARCH DETAIL
...