Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-435326

ABSTRACT

The global COVID-19 pandemic is caused by the SARS-CoV-2 virus and has infected over 100 million and caused over 2 million fatalities worldwide at the point of writing. There is currently a lack of effective drugs to treat people infected with SARS-CoV-2. The SARS-CoV-2 Non-structural protein 13 (NSP13) is a superfamily1B helicase that has been identified as a possible target for anti-viral drugs due to its high sequence conservation and essential role in viral replication. In this study we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and the non-hydrolysable ATP analogue (AMP-PNP). Comparisons of these structures reveal details of global and local conformational changes that are induced by nucleotide binding and hydrolysis and provide insights into the helicase mechanism and possible modes of inhibition. Structural analysis reveals two pockets on NSP13 that are classified as "druggable" and include one of the most conserved sites in the entire SARS-CoV-2 proteome. To identify possible starting points for anti-viral drug development we have performed a crystallographic fragment screen against SARS-CoV-2 NSP13 helicase. The fragment screen reveals 65 fragment hits across 52 datasets, with hot spots in pockets predicted to be of functional importance, including the druggable nucleotide and nucleic acid binding sites, opening the way to structure guided development of novel antiviral agents.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-248211

ABSTRACT

The SARS-CoV-2 coronavirus (CoV) causes COVID-19, a current global pandemic. SARS-CoV-2 belongs to an order of Nidovirales with very large RNA genomes. It is proposed that the fidelity of CoV genome replication is aided by an RNA nuclease complex, formed of non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Here, we confirm that the SARS-CoV-2 nsp14-nsp10 complex is an RNase. Detailed functional characterisation reveals nsp14-nsp10 is a highly versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3-terminus. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading and purges the nascent replicating RNA strand of a range of potentially replication terminating aberrations. Using the developed assays, we identify a series of drug and drug-like molecules that potently inhibit nsp14-nsp10, including the known Sars-Cov-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for bifunctional inhibitors in the treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...