Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(1): 445-50, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24335589

ABSTRACT

The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A virus/chemistry , Animals , Antibodies/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Chromatography, Gel , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunologic Memory , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Kinetics , Mice , Mice, Inbred BALB C , Microscopy, Electron , Models, Molecular , Molecular Conformation , Species Specificity
2.
Science ; 333(6044): 843-50, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21737702

ABSTRACT

Current flu vaccines provide only limited coverage against seasonal strains of influenza viruses. The identification of V(H)1-69 antibodies that broadly neutralize almost all influenza A group 1 viruses constituted a breakthrough in the influenza field. Here, we report the isolation and characterization of a human monoclonal antibody CR8020 with broad neutralizing activity against most group 2 viruses, including H3N2 and H7N7, which cause severe human infection. The crystal structure of Fab CR8020 with the 1968 pandemic H3 hemagglutinin (HA) reveals a highly conserved epitope in the HA stalk distinct from the epitope recognized by the V(H)1-69 group 1 antibodies. Thus, a cocktail of two antibodies may be sufficient to neutralize most influenza A subtypes and, hence, enable development of a universal flu vaccine and broad-spectrum antibody therapies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , Antibody Specificity , Antigens, Viral/chemistry , Antigens, Viral/genetics , Binding Sites, Antibody , Conserved Sequence , Crystallography, X-Ray , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/therapy , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Neutralization Tests , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...