Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Insects ; 14(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37754685

ABSTRACT

Predator-prey interactions are linked through trophic relationships, and individual population dynamics are a function of multiple interactions among many ecological factors. The present study considered the efficacy of the predatory mites Cheyletus eruditus (Schrank) (Trombidiformes: Cheyletidae) and Cheyletus malaccensis Oudemans to manage Liposcelis decolor (Pearman) (Psocodea: Liposcelididae). Prey population suppression and progeny replacement efficiency of the predators were assessed under different predator-prey ratios (0:20, 1:20, 2:20, 4:20, and 10:20), temperatures (20, 24, 28, and 32 °C), and relative humidities (RH) (63, 75, and 85%) over 40 days under laboratory conditions of 0:24 (L:D) photoperiod. Suppression of L. decolor population when C. eruditus-related predator-to-prey ratios of 1:20, 2:20, 4:20, and 10:20 were used was ~61.7, 79.7, 85.1, and 87.5%, respectively, relative to the Control ratio (0:20). In the case of C. malaccensis, suppression of 70, 82.1, 92.9, and 96.5%, respectively, was achieved. Although the low 63% RH limited efficacy of these cheyletid mites, both predatory mites caused pest population suppression of ~67.1-97.2% and increased their progeny by ~96.7-844.4% fold for the predator-prey ratios of 1:20, 2:20, 4:20, and 10:20, temperatures of 20, 24, 28, and 32 °C, and RH levels of 63, 75, and 85%. The levels of psocid population suppression achieved indicate the potential of both predatory mites for psocid management.

2.
J Econ Entomol ; 116(4): 1447-1457, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37348954

ABSTRACT

Predatory mites display diverse ecological mechanisms to suppress pest population density below certain thresholds known to cause economic loss. The current study explored the numerical responses of the predatory mites, Cheyletus eruditus (Schrank) (Trombidiformes: Cheyletidae) and Cheyletus malaccensis Oudemans, to Liposcelis decolor (Pearman) (Psocodea: Liposcelididae). The numerical responses of these 2 cheyletid mites to nymphs, adult males, and adult females of L. decolor were determined under laboratory conditions at 24 ± 1 °C, 85 ± 5 RH, and 0:24 (L:D) photoperiod. Oviposition rate, oviposition efficiency, and efficiency of conversion of ingested (ECI) food resources were the key numerical response parameters assessed. The present study revealed a general trend of a strong negative and positive correlation between oviposition rates and increase in prey densities (number of prey per 16.98 cm2) for C. eruditus and C. malaccensis, respectively. The oviposition efficiency was mostly similar for both predatory mites and was inversely related to prey density. Generally, ECI (%) decreased considerably with increasing prey density across different prey types for both predators, however, C. malaccensis was more efficient than C. eruditus in utilizing prey biomass. Given the relatively weak numerical responses, we recommended further assessment of these predatory mites before recommending their use for managing stored-product insect pests in the United States.


Subject(s)
Mites , Female , Male , Animals , Mites/physiology , Insecta , Oviposition , Predatory Behavior , Population Density
3.
J Econ Entomol ; 114(3): 1380-1388, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33855353

ABSTRACT

Psocids are damaging stored-product pests. In this study, eggs and early-instar nymphs, adults, and all life stages of Liposcelis entomophila, L. decolor, L. bostrychophila, and L. paeta were subjected to 43, 50, or 75% (Control) relative humidity (RH) for 2, 4, 6, 8, 10, 12, 14, or 16 d at 30.0°C. All adults of these species died within 8 d at both 43 and 50% RH, except for L. bostrychophila, which required 12 d at 50% RH for 100% mortality to occur. For all life stages and eggs and early-instar nymphs, maximum survival times (times to 100% mortality) at 43 or 50% RH for L. entomophila, L. decolor, L. bostrychophila, and L. paeta, were 8 and 10 d, 8 and 12 d, 12 and 14 d, and 12 and 16 d, respectively. During this study, numbers of nymphs and adults of all species 14 d after the RH treatments increased within the 75% RH Control arenas. Different species and life stages responded differently to 43 and 50% RH, as time to kill all stages of the four psocid species was 8-12 and 10-16 d, respectively. Results indicate that using a specific RH environment may be effective in psocid management.


Subject(s)
Insecta , Survivorship , Animals , Nymph , Species Specificity
4.
J Econ Entomol ; 112(4): 1932-1940, 2019 08 03.
Article in English | MEDLINE | ID: mdl-30972411

ABSTRACT

The sugarcane aphid Melanaphis sacchari (Zehnter) (Hemiptera: Aphididae) has emerged as a potential threat to sorghum (Sorghum bicolor (L.) Moench) production in the United States. Since the late summer of 2013, finding and advancing M. sacchari-resistant germplasm has been a priority for all stakeholders involved. We evaluated 23 sorghum genotypes for resistance to the sugarcane aphid by testing for tolerance, and antixenosis. In addition, nine sorghum germplasm were evaluated for the expression of antibiosis. Free-choice and no-choice tests were conducted to explore the functional categories of resistance. Levels of resistance to M. sacchari were compared with the known resistant 'TX 2783' and the susceptible 'KS 585'. Sorghum entries AG1201, AG1301, W844-E, and DKS 37-07 were identified as expressing tolerance, antibiosis, and antixenosis, while H13073 expressed antibiosis and GW1489 expressed both tolerance and antibiosis. These resistant sorghums identified during this study will have a significant impact on reducing economic damage from the sugarcane aphid infestations.


Subject(s)
Aphids , Sorghum , Animals , Genotype
5.
G3 (Bethesda) ; 8(3): 1039-1047, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29352078

ABSTRACT

The booklouse, Liposcelis bostrychophila is an important storage pest worldwide. The mitochondrial (mt) genome of an asexual strain (Beibei, China) of the L. bostrychophila comprises two chromosomes; each chromosome contains approximate half of the 37 genes typically found in bilateral animals. The mt genomes of two sexual strains of L. bostrychophila, however, comprise five and seven chromosomes, respectively; each chromosome contains one to six genes. To understand mt genome evolution in L. bostrychophila, and whether L. bostrychophila is a cryptic species, we sequenced the mt genomes of six strains of asexual L. bostrychophila collected from different locations in China, Croatia, and the United States. The mt genomes of all six asexual strains of L. bostrychophila have two chromosomes. Phylogenetic analysis of mt genome sequences divided nine strains of L. bostrychophila into four groups. Each group has a distinct mt genome organization and substantial sequence divergence (48.7-87.4%) from other groups. Furthermore, the seven asexual strains of L. bostrychophila, including the published Beibei strain, are more closely related to two other species of booklice, L. paeta and L. sculptilimacula, than to the sexual strains of L. bostrychophila Our results revealed highly divergent mt genomes in the booklouse, L. bostrychophila, and indicate that L. bostrychophila is a cryptic species.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Mitochondrial , Genomics , Insecta/classification , Insecta/genetics , Animals , Genes, Insect , Genomics/methods , Multigene Family , Open Reading Frames , Phylogeny , Whole Genome Sequencing
6.
J Econ Entomol ; 109(2): 930-41, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26743219

ABSTRACT

A field experiment was conducted in eight 13.6-MT steel bins containing 6.8 MT each of wheat to assess efficacy of sulfuryl fluoride or SF fumigant to control phosphine-resistant and susceptible Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Approximately 400 adults of each type of beetle were added to each bin. Additionally, muslin bags containing immature stages and adults, with their respective diets, were also placed in bins. Four bins were fumigated with SF and others were untreated control bins. The SF dosages in treated bins ranged from 1,196­1,467 mg-h/liter. Mortality of adults in each bag was assessed 5 d postfumigation; diet minus adults was incubated in a jar, and number of adults counted after 8 wk. No significant change occurred in number of insect-damaged kernels in SF-treated bins. In trier samples from SF-treated bins, R. dominica numbers declined from 24 prefumigation to 0 at 3- and 6-wk postfumigation; T. castaneum numbers were unchanged. In WBII traps from SF-treated bins, numbers R. dominica and T. castaneum declined from 25 and 33, respectively, prefumigation to 0 or near 0 at 3- and 6-wk postfumigation. Mortalities of resistant and susceptible adult R. dominica, and adult and large larvae of T. castaneum in SF-treated bags was 100%. For all four types of beetles, adult numbers in jars associated with SF-treated bins were 0 or near 0. Results show SF is effective against all life stages of phosphine-resistant R. dominica and T. castaneum, and can be used for phosphine resistance management.


Subject(s)
Fumigation , Sulfinic Acids , Tribolium , Triticum/parasitology , Animals , Environmental Monitoring , Food Parasitology , Insecticide Resistance , Insecticides , Phosphines
7.
BMC Genomics ; 16: 968, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26582239

ABSTRACT

BACKGROUND: Phosphine is a valuable fumigant to control pest populations in stored grains and grain products. However, recent studies indicate a substantial increase in phosphine resistance in stored product pests worldwide. RESULTS: To understand the molecular bases of phosphine resistance in insects, we used RNA-Seq to compare gene expression in phosphine-resistant and susceptible laboratory populations of the red flour beetle, Tribolium castaneum. Each population was evaluated as either phosphine-exposed or no phosphine (untreated controls) in triplicate biological replicates (12 samples total). Pairwise analysis indicated there were eight genes differentially expressed between susceptible and resistant insects not exposed to phosphine (i.e., basal expression) or those exposed to phopshine (>8-fold expression and 90 % C.I.). However, 214 genes were differentially expressed among all four treatment groups at a statistically significant level (ANOVA, p < 0.05). Increased expression of 44 cytochrome P450 genes was found in resistant vs. susceptible insects, and phosphine exposure resulted in additional increases of 21 of these genes, five of which were significant among all treatment groups (p < 0.05). Expression of two genes encoding anti-diruetic peptide was 2- to 8-fold reduced in phosphine-resistant insects, and when exposed to phosphine, expression was further reduced 36- to 500-fold compared to susceptible. Phosphine-resistant insects also displayed differential expression of cuticle, carbohydrate, protease, transporter, and many mitochondrial genes, among others. Gene ontology terms associated with mitochondrial functions (oxidation biological processes, monooxygenase and catalytic molecular functions, and iron, heme, and tetrapyyrole binding) were enriched in the significantly differentially expressed dataset. Sequence polymorphism was found in transcripts encoding a known phosphine resistance gene, dihydrolipoamide dehydrogenase, in both susceptible and resistant insects. Phosphine-resistant adults also were resistant to knockdown by the pyrethroid deltamethrin, likely due to the increased cytochrome P450 expression. CONCLUSIONS: Overall, genes associated with the mitochondria were differentially expressed in resistant insects, and these differences may contribute to a reduction in overall metabolism and energy production and/or compensation in resistant insects. These data provide the first gene expression data on the response of phosphine-resistant and -susceptible insects to phosphine exposure, and demonstrate that RNA-Seq is a valuable tool to examine differences in insects that respond differentially to environmental stimuli.


Subject(s)
Insecticide Resistance/genetics , Mitochondria/drug effects , Phosphines/pharmacology , Transcriptome/drug effects , Tribolium/cytology , Tribolium/genetics , Amino Acid Sequence , Animals , Cytochrome P-450 Enzyme System/genetics , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/genetics , Genomics , Mitochondria/metabolism , Molecular Sequence Data , Nitriles/pharmacology , Pyrethrins/pharmacology , Sequence Analysis, RNA , Tribolium/drug effects , Tribolium/enzymology
8.
Sci Rep ; 5: 10429, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26013922

ABSTRACT

The booklouse, Liposcelis bostrychophila, is a worldwide pest of stored products. For decades, only thelytokous parthenogenetic reproduction was documented in L. bostrychophila. Male L. bostrychophila were first found in Hawaii in 2002. In 2009, a sexual strain was found in Arizona. We examined the morphology of both males and females of the Arizona strain and compared the Arizona sexual strain with the Hawaii sexual strain and the parthenogenetic strains of L. bostrychophila. The sexual and parthenogenetic strains show some differences in eye morphology. To examine the relationship between sexual and asexual lineages, we sequenced the mitochondrial 12S and 16S ribosomal RNA genes of males and females from the Arizona strain. Phylogenetic analyses of L. bostrychophila individuals revealed that: 1) the sexually reproducing colony found in Arizona contains two closely related mitochondrial DNA haplotypes--one present in only females and the other in both males and females; and 2) the Arizona sexual strain was most closely related to a parthenogenetic strain in Illinois. We detected Rickettsia in all of the parthenogenetic individuals we checked but not in any Arizona sexual individuals. Further evidence is required to establish whether the presence of Rickettsia is linked to asexual reproduction in Liposcelis.


Subject(s)
Insecta/genetics , Animals , Arizona , Base Sequence , DNA, Bacterial/analysis , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Haplotypes , Insecta/classification , Insecta/microbiology , Male , Microscopy, Electron, Scanning , Molecular Sequence Data , Parthenogenesis , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rickettsia/genetics , Rickettsia/isolation & purification , Sequence Alignment
9.
Proc Natl Acad Sci U S A ; 112(33): 10162-8, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-25870270

ABSTRACT

In virtually all multicellular eukaryotes, mitochondria are transmitted exclusively through one parent, usually the mother. In this short review, we discuss some of the major consequences of uniparental transmission of mitochondria, including deleterious effects in males and selection for increased transmission through females. Many of these consequences, particularly sex ratio distortion, have well-studied parallels in other maternally transmitted genetic elements, such as bacterial endosymbionts of arthropods. We also discuss the consequences of linkage between mitochondria and other maternally transmitted genetic elements, including the role of cytonuclear incompatibilities in maintaining polymorphism. Finally, as a case study, we discuss a recently discovered maternally transmitted sex ratio distortion in an insect that is associated with extraordinarily divergent mitochondria.


Subject(s)
Inheritance Patterns , Mitochondria/genetics , Polymorphism, Genetic , Sex Ratio , Animals , Arthropods/microbiology , Bacteria/genetics , Base Sequence , Cell Nucleus/genetics , DNA Barcoding, Taxonomic , Electron Transport Complex IV/metabolism , Female , Haplotypes , Insecta/microbiology , Male , Molecular Sequence Data , Sequence Analysis, DNA , Symbiosis , Wolbachia/physiology
10.
J Econ Entomol ; 106(5): 2208-15, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24224266

ABSTRACT

Highly phosphine-resistant populations of Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) have recently been found in Oklahoma grain storage facilities. These findings necessitate development of a phosphine resistance management strategy to ensure continued effective use of phosphine. Therefore, we investigated the efficacies of two grain insecticides, namely, spinosad applied at label rate of 1 ppm and a mixture of chlorpyrifos-methyl and deltamethrin applied at label rates of 3 and 0.5 ppm, respectively, against highly phosphine-resistant R. dominica and T. castaneum. Adult mortality and progeny production suppression of spinosad- or chlorpyrifos-methyl + deltamethrin mixture-treated wheat that had been stored for 2, 84, 168, 252, and 336 d posttreatment were assessed. We found that both spinosad and chlorpyrifos-methyl + deltamethrin were effective against phosphine-resistant R. dominica and caused 83-100% mortality and also caused total progeny production suppression for all storage periods. Spinosad was not effective against phosphine-resistant T. castaneum; the highest mortality observed was only 3% for all the storage periods. Chlorpyrifos-methyl + deltamethrin was effective against phosphine-resistant T. castaneum only in treated wheat stored for 2 and 84 d, where it caused 93-99% mortality. However, chlorpyrifos-methyl + deltamethrin was effective and achieved total suppression of progeny production in T. castaneum for all the storage periods. Spinosad was not as effective as chlorpyrifos-methyl + deltamethrin mixture at suppressing progeny production of phosphine-resistant T. castaneum. These two insecticides can be used in a phosphine resistance management strategy for R. dominica and T. castaneum in the United States.


Subject(s)
Coleoptera/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Coleoptera/growth & development , Larva/drug effects , Larva/growth & development , Oklahoma , Tribolium/drug effects , Tribolium/growth & development , Triticum
11.
J Insect Sci ; 12: 1-14, 2012.
Article in English | MEDLINE | ID: mdl-23463916

ABSTRACT

The efficacies of commercial methoprene and esfenvalerate aerosols for control of stored-product psocid pests were evaluated in simulated field studies. The efficacies of methoprene, esfenvalerate EC, the carrier Isopar-M™, and a combination of methoprene and esfenvalerate aerosols for control of Liposcelis decolor (Pearman) (Psocoptera: Liposcelididae) and Liposcelis entomophila (Enderlein) nymphs were assessed, and the effects of direct and indirect exposure of Liposcelis bostrychophila Badonnel, L. decolor, and Liposcelis paeta Pearman adults to esfenvalerate EC aerosol were evaluated. The greatest nymphal mortality attained was 76%, indicating that the four aerosols tested were ineffective against L. decolor and L. entomophila nymphs. In the direct and indirect exposure studies, the greatest adult mortalities attained for the three psocid species were 62 and 32%, respectively. Based on these data, esfenvalerate aerosol is ineffective for control of L. bostrychophila, L. decolor, L. entomophila, and L. paeta psocid species. This study shows that methoprene, esfenvalerate EC, and a combination of methoprene and esfenvalerate aerosols were ineffective against the four psocid species tested when applied at rates that are usually effective against other stored-product insect pests.


Subject(s)
Insect Control , Insecta , Insecticides , Juvenile Hormones , Methoprene , Nitriles , Pyrethrins , Aerosols , Animals , Nymph , Species Specificity
12.
J Econ Entomol ; 103(3): 985-90, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20568647

ABSTRACT

Differences in stored-product psocid progeny production as a function of commodity type, percentage of cracked kernels, and wheat class were examined using laboratory bioassays. Population growth of Liposcelis bostrychophila Badonnel, Liposcelis decolor (Pearman), Liposcelis paeta Pearman, and Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae) was highest on sorghum Sorghum bicolor (L.) Moench, followed by wheat, Triticum aestivum L., and rice, Oryza sativa L., whereas progeny production was negligible on wheat germ. In a second experiment that did not include L. entomophila, population growth was examined on wheat containing 0, 1, 5, 10, 20, 50, and 100% cracked kernels. Progeny production did not increase as cracked kernel content increased. Instead, progeny production peaked at 20% for L. bostrychophila adults and nymphs, at 10% for L. decolor, and at 50% for L. paeta adults; no further increases were noted beyond these levels of cracked wheat content. In a third experiment that did not include L. entomophila, progeny production was examined on eight classes of wheat: hard red winter, hard red spring, soft white winter, soft white spring, soft club, durum, soft red winter, and hard white. Overall, progeny production was higher on durum wheat than on the other classes. The results indicate that there are considerable variations in psocid population growth among the different commodities tested, and this information may be used to predict the degree to which stored commodities are susceptible to psocid infestation.


Subject(s)
Insecta/physiology , Triticum , Animals , Population Growth , Seeds
13.
J Econ Entomol ; 102(4): 1673-80, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19736783

ABSTRACT

We evaluated the efficacy of three diatomaceous earth (DE) formulations, Dryacide, Protect-It, and Insecto, against three Psocoptera species, Liposcelis entomophila (Enderlein) (Liposcelididae), Lepinotus reticulatus Enderlein (Trogiidae), and Liposcelis decolor (Pearman), in the laboratory. Bioassays were conducted in three grain commodities, wheat, rice and maize, at 30 degrees C and 75% RH, and the DEs were applied at the recommended dose rates of 1,000, 400, and 500 ppm for Dryacide, Protect-It, and Insecto, respectively. Differences in adult mortality were found among grains and DEs for L. entomophila and L. reticulatus, but these trends were not consistent for all combinations tested. Type of grain and DE did not affect L. decolor mortality significantly. Moreover, mortality increased with increasing exposure time for L. entomophila and L. reticulatus, but there was no effect of exposure time on L. decolor. After 7 d of exposure, mortalities of L. entomophila, L. reticulatus, and L. decolor were 56, 55, and 40%, respectively, and the respective mortality levels after 14 d were 63, 71, and 42%. Progeny production after 30 d was significantly suppressed for all species in the treated grains. However, progeny production was still high in the treated grains and reached 54, 42, and 76 individuals/10 g of grain for L. entomophila, L. reticulatus, and L. decolor, respectively. Progeny production did not vary with commodity. Our results suggest that DEs, when used alone, will not provide effective control of psocids.


Subject(s)
Diatomaceous Earth , Insecta , Insecticides , Oryza , Triticum , Zea mays , Animals , Insect Control/methods , Mortality , Species Specificity
14.
J Econ Entomol ; 102(1): 336-46, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19253653

ABSTRACT

Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.


Subject(s)
Carbamates , Hydrazines , Insecticides , Pest Control, Biological/economics , Tetranychidae , Animals , Gardening , Impatiens/parasitology , Pelargonium/parasitology
15.
Pest Manag Sci ; 64(12): 1314-22, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18683906

ABSTRACT

BACKGROUND: The psocids Liposcelis bostrychophila Badonnel and L. entomophila (Enderlein) (Liposcelididae) are emerging pests of stored products. Although their behavior, particularly their high mobility, may contribute to the reported relatively low efficacy of insecticides against them, studies to investigate this have not been conducted. The present study aimed to assess the label rate efficacy of three commercial insecticides (beta-cyfluthrin, chlorfenapyr and pyrethrins) applied on concrete surfaces against L. bostrychophila and L. entomophila, and also their sublethal effect on the mobility of these species. RESULTS: The synthetic insecticides beta-cyfluthrin and chlorfenapyr showed high short-term efficacy (LT(95)or= 4 days). Liposcelis bostrychophila was slightly more tolerant (>or=1.2x) than L. entomophila to all three insecticides. Behavioral assays with fully sprayed and half-sprayed concrete arenas indicated that the insecticides reduced the mobility of both species. Pyrethrins seem to elicit weak repellence in L. bostrychophila. CONCLUSION: beta-Cyfluthrin and chlorfenapyr were effective against both psocid species, but not pyrethrins. The mobility of both species does not seem to play a major role in the differential selectivity observed, but the lower mobility of L. bostrychophila may be a contributing factor to its higher insecticide tolerance.


Subject(s)
Behavior, Animal/drug effects , Insecta/drug effects , Insecticides/pharmacology , Locomotion/drug effects , Animals , Nitriles/pharmacology , Pyrethrins/pharmacology , Time Factors
16.
J Econ Entomol ; 100(6): 1821-30, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18232399

ABSTRACT

The influence of plant nutrition on arthropod pests has often been studied by comparing plants provided suboptimal nutrients with those provided sufficient or luxurious nutrients, but such results have limited applicability to commercially produced crops because nitrogen (N) and phosphorus (P) are almost never limiting in greenhouse production. We conducted a series of experiments with ivy geranium, Pelargonium peltatum (L.) L'Hr. ex Aiton 'Amethyst 96' to determine the response of twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), to six combinations of N (8 or 24 mM) and P (0.32, 0.64, or 1.28 mM) that reflected commercial production practices. All six combinations resulted in saleable plants when plants were free of spider mites, but tissue N and P concentrations among fertilizer combinations were different. On mite-infested plants, no difference in mite numbers or plant damage was found in response to N fertilization rates. Phosphorus had no effect on mite population level until week 8, at which time plants fertilized with 0.64 mM P had slightly more mites than plants fertilized with 0.32 mM. However, overall quality and dry weight of plants fertilized by 0.32 mM P was lower than that of 0.64 and 1.28 mM, which suggests that ivy geranium plants fertilized with the higher P rates may better compensate for mite feeding damage. Positive correlations were found between within-plant distribution of mites and the corresponding tissue N and P concentrations in three foliage strata, suggesting that tissue nutrient content may influence mite selection of feeding sites.


Subject(s)
Nitrogen/pharmacology , Pelargonium/growth & development , Pelargonium/parasitology , Phosphorus/pharmacology , Tetranychidae/physiology , Animals , Fertilizers , Host-Parasite Interactions , Nitrogen/metabolism , Pelargonium/drug effects , Phosphorus/metabolism , Population Dynamics
17.
Exp Appl Acarol ; 38(2-3): 141-9, 2006.
Article in English | MEDLINE | ID: mdl-16596348

ABSTRACT

The compatibility of the selective insecticide spinosad (Conserve SC), at rates recommended for thrips control in greenhouses, with release of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) to control spider mites, was investigated in a crop of ivy geranium Pelargonium peltatum, cultivar 'Amethyst 96.' Plants were inoculated with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), 2 weeks before treatments were applied. There were three treatment variables, each at two levels: predators (released or not), spray application (water or Conserve SC at 2 ml/3.79 l), and timing of spray (1 day before or after predators were released). Twospotted spider mite populations then were sampled twice each week over a three-week period. The application or timing of spinosad had no effect on the ability of the predator to reduce the population of spider mites. Spider mite populations in the no-predator treatment continued to expand over the course of the experiment, while those in the predator-release treatment declined. We conclude that P. persimilis can be used in conjunction with spinosad on ivy geraniums without causing obvious detrimental effects to this predator or leading to a reduction in biological control.


Subject(s)
Geranium/parasitology , Insecticides , Macrolides , Pest Control, Biological/methods , Tetranychidae/growth & development , Animals , Drug Combinations , Female , Mite Infestations/prevention & control , Pest Control, Biological/standards , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...