Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 24(17): 4406-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26206253

ABSTRACT

Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test whether northward range expansion of obligate apomicts of the common dandelion (Taraxacum officinale) is associated with DNA methylation variation. We characterized and compared patterns of genetic and DNA methylation variation in greenhouse-reared offspring of T. officinale that were collected along a latitudinal transect of northward range expansion in Europe. Genetic AFLP and epigenetic MS-AFLP markers revealed high levels of local diversity and modest but significant heritable differentiation between sampling locations and between the southern, central and northern regions of the transect. Patterns of genetic and epigenetic variation were significantly correlated, reflecting the genetic control over epigenetic variation and/or the accumulation of lineage-specific spontaneous epimutations, which may be selectively neutral. In addition, we identified a small component of DNA methylation differentiation along the transect that is independent of genetic variation. This epigenetic differentiation might reflect environment-specific induction or, in case the DNA methylation variation affects relevant traits and fitness, selection of heritable DNA methylation variants. Such generated epigenetic variants might contribute to the adaptive capacity of individual asexual lineages under changing environments. Our results highlight the potential of heritable DNA methylation variation to contribute to population differentiation along ecological gradients. Further studies are needed using higher resolution methods to understand the functional significance of such natural occurring epigenetic differentiation.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genetic Variation , Taraxacum/genetics , Adaptation, Physiological/genetics , Amplified Fragment Length Polymorphism Analysis , DNA, Plant/genetics , Europe , Genetics, Population , Sequence Analysis, DNA
2.
J Plant Physiol ; 169(9): 878-83, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22424572

ABSTRACT

Abscisic acid (ABA) deficient mutants, such as notabilis and flacca, have helped elucidating the role of ABA during plant development and stress responses in tomato (Solanum lycopersicum L.). However, these mutants have only moderately decreased ABA levels. Here we report on plant and fruit development in the more strongly ABA-deficient notabilis/flacca (not/flc) double mutant. We observed that plant growth, leaf-surface area, drought-induced wilting and ABA-related gene expression in the different genotypes were strongly correlated with the ABA levels and thus most strongly affected in the not/flc double mutants. These mutants also had reduced fruit size that was caused by an overall smaller cell size. Lower ABA levels in fruits did not correlate with changes in auxin levels, but were accompanied by higher ethylene evolution rates. This suggests that in a wild-type background ABA stimulates cell enlargement during tomato fruit growth via a negative effect on ethylene synthesis.


Subject(s)
Abscisic Acid/metabolism , Cell Enlargement/drug effects , Fruit/growth & development , Plant Growth Regulators/metabolism , Solanum lycopersicum/growth & development , Dehydration/physiopathology , Ethylenes/biosynthesis , Gene Expression Regulation, Plant/drug effects , Genetic Variation , Genotype , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Plant Leaves/growth & development , Plants, Genetically Modified/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...