Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 58: 75-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25600118

ABSTRACT

Guided wave ultrasonics is an attractive monitoring technique for damage diagnosis in large-scale plate and pipe structures. Damage can be detected by comparing incoming records with baseline records collected on intact structure. However, during long-term monitoring, environmental and operational conditions often vary significantly and produce large changes in the ultrasonic signals, thereby challenging the baseline comparison based damage detection. Researchers developed temperature compensation methods to eliminate the effects of temperature variation, but they have limitations in practical implementations. In this paper, we develop a robust damage detection method based on singular value decomposition (SVD). We show that the orthogonality of singular vectors ensures that the effect of damage and that of environmental and operational variations are separated into different singular vectors. We report on our field ultrasonic monitoring of a 273.05 mm outer diameter pipe segment, which belongs to a hot water piping system in continuous operation. We demonstrate the efficacy of our method on experimental pitch-catch records collected during seven months. We show that our method accurately detects the presence of a mass scatterer, and is robust to the environmental and operational variations exhibited in the practical system.

2.
Sensors (Basel) ; 13(6): 6910-35, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23708273

ABSTRACT

Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

3.
Article in English | MEDLINE | ID: mdl-23475923

ABSTRACT

We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss resulting from the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

4.
Article in English | MEDLINE | ID: mdl-24626038

ABSTRACT

We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

5.
Article in English | MEDLINE | ID: mdl-16422424

ABSTRACT

We report here the use of finite element simulation and experiments to further explore the operation of the wafer transducer. We have separately modeled the emission and detection processes. In particular, we have calculated the wave velocities and the received voltage signals due to A0 and S0 modes at an output transducer as a function of pulse center frequency. These calculations include the effects of finite pulse width, pulse dispersion, and the detailed interaction between the piezoelectric element and the transmitting medium. We show that the received signals for A0 and S0 modes have maxima near the frequencies predicted from the previously published point-force model.


Subject(s)
Ceramics/chemistry , Computer-Aided Design , Models, Theoretical , Transducers , Ultrasonography/instrumentation , Ceramics/radiation effects , Computer Simulation , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography/methods
6.
Article in English | MEDLINE | ID: mdl-12699163

ABSTRACT

We report electrical characterization of micromachined polysilicon capacitive diaphragms for use as ultrasonic transducers. Admittance measurements yield insight into the resonant behavior and also the damping resulting from ultrasonic radiation and frictional forces caused by the etch release holes. Unbonded transducers exhibit sharp resonances with Q values that increase with decreasing air pressure. We also report for the first time direct bonding of these transducers to solid surfaces. Transducers survive the bonding process and show distinctly different displacement in response to applied dc bias. Finally, a single-degree-of-freedom model is used to obtain insight into the various contributions to damping.


Subject(s)
Electrochemistry/instrumentation , Silicon/chemistry , Transducers , Ultrasonography/instrumentation , Acoustic Stimulation , Electric Capacitance , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis , Materials Testing/methods , Miniaturization , Models, Theoretical , Sensitivity and Specificity , Ultrasonography/methods
7.
Article in English | MEDLINE | ID: mdl-12699164

ABSTRACT

Arrays of capacitive diaphragm ultrasonic transducers could potentially be used for non-destructive ultrasonic testing and structural monitoring. In this paper, we consider the efficiency of coupling of these transducers to solid media. We show that efficient coupling can be realized by using a silicone coating as a coupling medium. We present the results of experimental characterization of ultrasonic transducers coupled to solids in this way. We show that these transducers can be used with piezoelectric emitting transducers within the range from 1 to 5 MHz, and we demonstrate the use of several transducers as a phased array to determine the direction and distance of an ultrasonic source.


Subject(s)
Electrochemistry/instrumentation , Equipment Failure Analysis/instrumentation , Materials Testing/instrumentation , Transducers , Ultrasonography/instrumentation , Acoustic Stimulation , Cementation/methods , Electric Capacitance , Electrochemistry/methods , Equipment Design , Equipment Failure Analysis/methods , Materials Testing/methods , Miniaturization , Models, Theoretical , Quality Control , Sensitivity and Specificity , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...