Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Neurol ; 16(11): 908-916, 2017 11.
Article in English | MEDLINE | ID: mdl-28958801

ABSTRACT

BACKGROUND: Better understanding and prediction of progression of Parkinson's disease could improve disease management and clinical trial design. We aimed to use longitudinal clinical, molecular, and genetic data to develop predictive models, compare potential biomarkers, and identify novel predictors for motor progression in Parkinson's disease. We also sought to assess the use of these models in the design of treatment trials in Parkinson's disease. METHODS: A Bayesian multivariate predictive inference platform was applied to data from the Parkinson's Progression Markers Initiative (PPMI) study (NCT01141023). We used genetic data and baseline molecular and clinical variables from patients with Parkinson's disease and healthy controls to construct an ensemble of models to predict the annual rate of change in combined scores from the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. We tested our overall explanatory power, as assessed by the coefficient of determination (R2), and replicated novel findings in an independent clinical cohort from the Longitudinal and Biomarker Study in Parkinson's disease (LABS-PD; NCT00605163). The potential utility of these models for clinical trial design was quantified by comparing simulated randomised placebo-controlled trials within the out-of-sample LABS-PD cohort. FINDINGS: 117 healthy controls and 312 patients with Parkinson's disease from the PPMI study were available for analysis, and 317 patients with Parkinson's disease from LABS-PD were available for validation. Our model ensemble showed strong performance within the PPMI cohort (five-fold cross-validated R2 41%, 95% CI 35-47) and significant-albeit reduced-performance in the LABS-PD cohort (R2 9%, 95% CI 4-16). Individual predictive features identified from PPMI data were confirmed in the LABS-PD cohort. These included significant replication of higher baseline MDS-UPDRS motor score, male sex, and increased age, as well as a novel Parkinson's disease-specific epistatic interaction, all indicative of faster motor progression. Genetic variation was the most useful predictive marker of motor progression (2·9%, 95% CI 1·5-4·3). CSF biomarkers at baseline showed a more modest (0·3%, 95% CI 0·1-0·5) but still significant effect on prediction of motor progression. The simulations (n=5000) showed that incorporating the predicted rates of motor progression (as assessed by the annual change in MDS-UPDRS score) into the final models of treatment effect reduced the variability in the study outcome, allowing significant differences to be detected at sample sizes up to 20% smaller than in naive trials. INTERPRETATION: Our model ensemble confirmed established and identified novel predictors of Parkinson's disease motor progression. Improvement of existing prognostic models through machine-learning approaches should benefit trial design and evaluation, as well as clinical disease monitoring and treatment. FUNDING: Michael J Fox Foundation for Parkinson's Research and National Institute of Neurological Disorders and Stroke.


Subject(s)
Parkinson Disease/genetics , Parkinson Disease/physiopathology , Cohort Studies , Female , Humans , Male , Parkinson Disease/diagnosis
2.
PLoS One ; 8(6): e65386, 2013.
Article in English | MEDLINE | ID: mdl-23799012

ABSTRACT

Time-reversal symmetry breaking is a key feature of many classes of natural sounds, originating in the physics of sound production. While attention has been paid to the response of the auditory system to "natural stimuli," very few psychophysical tests have been performed. We conduct psychophysical measurements of time-frequency acuity for stylized representations of "natural"-like notes (sharp attack, long decay) and the time-reversed versions of these notes (long attack, sharp decay). Our results demonstrate significantly greater precision, arising from enhanced temporal acuity, for such sounds over their time-reversed versions, without a corresponding decrease in frequency acuity. These data inveigh against models of auditory processing that include tradeoffs between temporal and frequency acuity, at least in the range of notes tested and suggest the existence of statistical priors for notes with a sharp-attack and a long-decay. We are additionally able to calculate a minimal theoretical bound on the sophistication of the nonlinearities in auditory processing. We find that among the best studied classes of nonlinear time-frequency representations, only matching pursuit, spectral derivatives, and reassigned spectrograms are able to satisfy this criterion.


Subject(s)
Acoustics , Humans , Psychophysics , Time
3.
Phys Rev Lett ; 110(4): 044301, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166166

ABSTRACT

The time-frequency uncertainty principle states that the product of the temporal and frequency extents of a signal cannot be smaller than 1/(4 π). We study human ability to simultaneously judge the frequency and the timing of a sound. Our subjects often exceeded the uncertainty limit, sometimes by more than tenfold, mostly through remarkable timing acuity. Our results establish a lower bound for the nonlinearity and complexity of the algorithms employed by our brains in parsing transient sounds, rule out simple "linear filter" models of early auditory processing, and highlight timing acuity as a central feature in auditory object processing.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 1): 021134, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23005749

ABSTRACT

Transport networks are found at the heart of myriad natural systems, yet are poorly understood, except for the case of river networks. The Scheidegger model, in which rivers are convergent random walks, has been studied only in the case of flat topography, ignoring the variety of curved geometries found in nature. Embedding this model on a cone, we find a convergent and a divergent phase, corresponding to few, long basins and many, short basins, respectively, separated by a singularity, indicating a phase transition. Quantifying basin shape using Hacks law l ~ a(h) gives distinct values for h, providing a method of testing our hypotheses. The generality of our model suggests implications for vascular morphology, in particular, differing number and shapes of arterial and venous trees.

SELECTION OF CITATIONS
SEARCH DETAIL
...