Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 18(1): 67, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546260

ABSTRACT

BACKGROUND: Acetyl-CoA is a key molecule in all organisms, implicated in several metabolic pathways as well as in transcriptional regulation and post-translational modification. The human pathogen Toxoplasma gondii possesses at least four enzymes which generate acetyl-CoA in the nucleo-cytosol (acetyl-CoA synthetase (ACS); ATP citrate lyase (ACL)), mitochondrion (branched-chain α-keto acid dehydrogenase-complex (BCKDH)) and apicoplast (pyruvate dehydrogenase complex (PDH)). Given the diverse functions of acetyl-CoA, we know very little about the role of sub-cellular acetyl-CoA pools in parasite physiology. RESULTS: To assess the importance and functions of sub-cellular acetyl-CoA-pools, we measured the acetylome, transcriptome, proteome and metabolome of parasites lacking ACL/ACS or BCKDH. We demonstrate that ACL/ACS constitute a synthetic lethal pair. Loss of both enzymes causes a halt in fatty acid elongation, hypo-acetylation of nucleo-cytosolic and secretory proteins and broad changes in gene expression. In contrast, loss of BCKDH results in an altered TCA cycle, hypo-acetylation of mitochondrial proteins and few specific changes in gene expression. We provide evidence that changes in the acetylome, transcriptome and proteome of cells lacking BCKDH enable the metabolic adaptations and thus the survival of these parasites. CONCLUSIONS: Using multi-omics and molecular tools, we obtain a global and integrative picture of the role of distinct acetyl-CoA pools in T. gondii physiology. Cytosolic acetyl-CoA is essential and is required for the synthesis of parasite-specific fatty acids. In contrast, loss of mitochondrial acetyl-CoA can be compensated for through metabolic adaptations implemented at the transcriptional, translational and post-translational level.


Subject(s)
Metabolome/genetics , Proteome/genetics , Protozoan Proteins/genetics , Toxoplasma/enzymology , Transcriptome/genetics , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism
3.
PLoS Comput Biol ; 11(5): e1004261, 2015 May.
Article in English | MEDLINE | ID: mdl-26001086

ABSTRACT

Toxoplasma gondii is a human pathogen prevalent worldwide that poses a challenging and unmet need for novel treatment of toxoplasmosis. Using a semi-automated reconstruction algorithm, we reconstructed a genome-scale metabolic model, ToxoNet1. The reconstruction process and flux-balance analysis of the model offer a systematic overview of the metabolic capabilities of this parasite. Using ToxoNet1 we have identified significant gaps in the current knowledge of Toxoplasma metabolic pathways and have clarified its minimal nutritional requirements for replication. By probing the model via metabolic tasks, we have further defined sets of alternative precursors necessary for parasite growth. Within a human host cell environment, ToxoNet1 predicts a minimal set of 53 enzyme-coding genes and 76 reactions to be essential for parasite replication. Double-gene-essentiality analysis identified 20 pairs of genes for which simultaneous deletion is deleterious. To validate several predictions of ToxoNet1 we have performed experimental analyses of cytosolic acetyl-CoA biosynthesis. ATP-citrate lyase and acetyl-CoA synthase were localised and their corresponding genes disrupted, establishing that each of these enzymes is dispensable for the growth of T. gondii, however together they make a synthetic lethal pair.


Subject(s)
Computational Biology/methods , Genes, Protozoan , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Acetyl Coenzyme A/metabolism , Algorithms , Automation , Cloning, Molecular , Computer Simulation , DNA/analysis , Gene Deletion , Genome , Host-Parasite Interactions , Humans , Metabolic Networks and Pathways , Open Reading Frames , Phenotype , Toxoplasma/genetics , Toxoplasmosis/parasitology
4.
PLoS Pathog ; 10(7): e1004263, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25032958

ABSTRACT

While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens.


Subject(s)
Mitochondria , Mitochondrial Proteins/genetics , Oxidoreductases/genetics , Plasmodium berghei , Protozoan Proteins/genetics , Toxoplasma , Mitochondria/enzymology , Mitochondria/genetics , Plasmodium berghei/enzymology , Plasmodium berghei/genetics , Toxoplasma/enzymology , Toxoplasma/genetics
5.
Brief Funct Genomics ; 12(4): 316-27, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23793264

ABSTRACT

Plasmodium falciparum is an obligate intracellular parasite and the leading cause of severe malaria responsible for tremendous morbidity and mortality particularly in sub-Saharan Africa. Successful completion of the P. falciparum genome sequencing project in 2002 provided a comprehensive foundation for functional genomic studies on this pathogen in the following decade. Over this period, a large spectrum of experimental approaches has been deployed to improve and expand the scope of functionally annotated genes. Meanwhile, rapidly evolving methods of systems biology have also begun to contribute to a more global understanding of various aspects of the biology and pathogenesis of malaria. Herein we provide an overview on metabolic modelling, which has the capability to integrate information from functional genomics studies in P. falciparum and guide future malaria research efforts towards the identification of novel candidate drug targets.


Subject(s)
Computational Biology/methods , Genomics/methods , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Plasmodium falciparum/metabolism
6.
Mol Microbiol ; 87(4): 894-908, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23279335

ABSTRACT

Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa phylum. The Coccidia are obligate intracellular pathogens that establish infection in their mammalian host via the enteric route. These parasites lack a mitochondrial pyruvate dehydrogenase complex but have preserved the degradation of branched-chain amino acids (BCAA) as a possible pathway to generate acetyl-CoA. Importantly, degradation of leucine, isoleucine and valine could lead to concomitant accumulation of propionyl-CoA, a toxic metabolite that inhibits cell growth. Like fungi and bacteria, the Coccidia possess the complete set of enzymes necessary to metabolize and detoxify propionate by oxidation to pyruvate via the 2-methylcitrate cycle (2-MCC). Phylogenetic analysis provides evidence that the 2-MCC was acquired via horizontal gene transfer. In T. gondii tachyzoites, this pathway is split between the cytosol and the mitochondrion. Although the rate-limiting enzyme 2-methylisocitrate lyase is dispensable for parasite survival, its substrates accumulate in parasites deficient in the enzyme and its absence confers increased sensitivity to propionic acid. BCAA is also dispensable in tachyzoites, leaving unresolved the source of mitochondrial acetyl-CoA.


Subject(s)
Citrates/metabolism , Propionates/metabolism , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/toxicity , Animals , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Molecular Sequence Data , Phylogeny , Propionates/toxicity , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/classification , Toxoplasma/enzymology , Toxoplasma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...