Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Earths Future ; 10(4): e2021EF002462, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35860749

ABSTRACT

Future coastal flood hazard at many locations will be impacted by both tropical cyclone (TC) change and relative sea-level rise (SLR). Despite sea level and TC activity being influenced by common thermodynamic and dynamic climate variables, their future changes are generally considered independently. Here, we investigate correlations between SLR and TC change derived from simulations of 26 Coupled Model Intercomparison Project Phase 6 models. We first explore correlations between SLR and TC activity by inference from two large-scale factors known to modulate TC activity: potential intensity (PI) and vertical wind shear. Under the high emissions SSP5-8.5, SLR is strongly correlated with PI change (positively) and vertical wind shear change (negatively) over much of the western North Atlantic and North West Pacific, with global mean surface air temperature (GSAT) modulating the co-variability. To explore the impact of the joint changes on flood hazard, we conduct climatological-hydrodynamic modeling at five sites along the US East and Gulf Coasts. Positive correlations between SLR and TC change alter flood hazard projections, particularly at Wilmington, Charleston and New Orleans. For example, if positive correlations between SLR and TC changes are ignored in estimating flood hazard at Wilmington, the average projected change to the historical 100 years storm tide event is under-estimated by 12%. Our results suggest that flood hazard assessments that neglect the joint influence of these factors and that do not reflect the full distribution of GSAT change may not accurately represent future flood hazard.

2.
Sci Rep ; 12(1): 10677, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739282

ABSTRACT

Sea level rise (SLR) will increase adaptation needs along low-lying coasts worldwide. Despite centuries of experience with coastal risk, knowledge about the effectiveness and feasibility of societal adaptation on the scale required in a warmer world remains limited. This paper contrasts end-century SLR risks under two warming and two adaptation scenarios, for four coastal settlement archetypes (Urban Atoll Islands, Arctic Communities, Large Tropical Agricultural Deltas, Resource-Rich Cities). We show that adaptation will be substantially beneficial to the continued habitability of most low-lying settlements over this century, at least until the RCP8.5 median SLR level is reached. However, diverse locations worldwide will experience adaptation limits over the course of this century, indicating situations where even ambitious adaptation cannot sufficiently offset a failure to effectively mitigate greenhouse-gas emissions.


Subject(s)
Climate Change , Sea Level Rise , Acclimatization , Cities
4.
Clim Change ; 170(3-4): 30, 2022.
Article in English | MEDLINE | ID: mdl-35221398

ABSTRACT

Estimates of changes in the frequency or height of contemporary extreme sea levels (ESLs) under various climate change scenarios are often used by climate and sea level scientists to help communicate the physical basis for societal concern regarding sea level rise. Changes in ESLs (i.e., the hazard) are often represented using various metrics and indicators that, when anchored to salient impacts on human systems and the natural environment, provide useful information to policy makers, stakeholders, and the general public. While changes in hazards are often anchored to impacts at local scales, aggregate global summary metrics generally lack the context of local exposure and vulnerability that facilitates translating hazards into impacts. Contextualizing changes in hazards is also needed when communicating the timing of when projected ESL frequencies cross critical thresholds, such as the year in which ESLs higher than the design height benchmark of protective infrastructure (e.g., the 100-year water level) are expected to occur within the lifetime of that infrastructure. We present specific examples demonstrating the need for such contextualization using a simple flood exposure model, local sea level rise projections, and population exposure estimates for 414 global cities. We suggest regional and global climate assessment reports integrate global, regional, and local perspectives on coastal risk to address hazard, vulnerability and exposure simultaneously. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10584-021-03288-6.

6.
Proc Natl Acad Sci U S A ; 117(43): 26692-26702, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33046645

ABSTRACT

Migration may be increasingly used as adaptation strategy to reduce populations' exposure and vulnerability to climate change impacts. Conversely, either through lack of information about risks at destinations or as outcome of balancing those risks, people might move to locations where they are more exposed to climatic risk than at their origin locations. Climate damages, whose quantification informs understanding of societal exposure and vulnerability, are typically computed by integrated assessment models (IAMs). Yet migration is hardly included in commonly used IAMs. In this paper, we investigate how border policy, a key influence on international migration flows, affects exposure and vulnerability to climate change impacts. To this aim, we include international migration and remittance dynamics explicitly in a widely used IAM employing a gravity model and compare four scenarios of border policy. We then quantify effects of border policy on population distribution, income, exposure, and vulnerability and of CO2 emissions and temperature increase for the period 2015 to 2100 along five scenarios of future development and climate change. We find that most migrants tend to move to areas where they are less exposed and vulnerable than where they came from. Our results confirm that migration and remittances can positively contribute to climate change adaptation. Crucially, our findings imply that restrictive border policy can increase exposure and vulnerability, by trapping people in areas where they are more exposed and vulnerable than where they would otherwise migrate. These results suggest that the consequences of migration policy should play a greater part in deliberations about international climate policy.

7.
Earths Future ; 8(3): e2019EF001340, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32715011

ABSTRACT

Deep uncertainty describes situations when there is either ignorance or disagreement over (1) models used to describe key system processes and (2) probability distributions used to characterize the uncertainty of key variables and parameters. Future projections of Antarctic ice sheet (AIS) mass loss remain characterized by deep uncertainty. This complicates decisions on long-lived coastal protection projects when determining what margin of safety to implement. If the chosen margin of safety does not properly account for uncertainties in sea level rise, the effectiveness of flood protection could decrease over time, potentially putting lives and properties at a greater risk. To address this issue, we develop a flood damage allowance framework for calculating the height of a flood protection strategy needed to ensure that a given level of financial risk is maintained. The damage allowance framework considers decision maker preferences such as planning horizons, protection strategies, and subjective views of AIS stability. We use Manhattan-with the population and built environment fixed in time-to illustrate how our framework could be used to calculate a range of damage allowances based on multiple plausible scenarios of AIS melt. Under high greenhouse gas emissions, we find that results are sensitive to the selection of the upper limit of AIS contributions to sea level rise. Design metrics that specify financial risk targets, such as expected flood damage, allow for the calculation of avoided flood damages (i.e., benefits) that can be combined with estimates of construction cost and then integrated into existing financial decision-making approaches (e.g., benefit-cost analysis).

8.
Nat Commun ; 11(1): 390, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959769

ABSTRACT

Uncertainties in Representative Concentration Pathway (RCP) scenarios and Antarctic Ice Sheet (AIS) melt propagate into uncertainties in projected mean sea-level (MSL) changes and extreme sea-level (ESL) events. Here we quantify the impact of RCP scenarios and AIS contributions on 21st-century ESL changes at tide-gauge sites across the globe using extreme-value statistics. We find that even under RCP2.6, almost half of the sites could be exposed annually to a present-day 100-year ESL event by 2050. Most tropical sites face large increases in ESL events earlier and for scenarios with smaller MSL changes than extratropical sites. Strong emission reductions lower the probability of large ESL changes but due to AIS uncertainties, cannot fully eliminate the probability that large increases in frequencies of ESL events will occur. Under RCP8.5 and rapid AIS mass loss, many tropical sites, including low-lying islands face a MSL rise by 2100 that exceeds the present-day 100-year event level.

9.
Proc Natl Acad Sci U S A ; 116(23): 11195-11200, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31110015

ABSTRACT

Despite considerable advances in process understanding, numerical modeling, and the observational record of ice sheet contributions to global mean sea-level rise (SLR) since the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, severe limitations remain in the predictive capability of ice sheet models. As a consequence, the potential contributions of ice sheets remain the largest source of uncertainty in projecting future SLR. Here, we report the findings of a structured expert judgement study, using unique techniques for modeling correlations between inter- and intra-ice sheet processes and their tail dependences. We find that since the AR5, expert uncertainty has grown, in particular because of uncertain ice dynamic effects. For a +2 °C temperature scenario consistent with the Paris Agreement, we obtain a median estimate of a 26 cm SLR contribution by 2100, with a 95th percentile value of 81 cm. For a +5 °C temperature scenario more consistent with unchecked emissions growth, the corresponding values are 51 and 178 cm, respectively. Inclusion of thermal expansion and glacier contributions results in a global total SLR estimate that exceeds 2 m at the 95th percentile. Our findings support the use of scenarios of 21st century global total SLR exceeding 2 m for planning purposes. Beyond 2100, uncertainty and projected SLR increase rapidly. The 95th percentile ice sheet contribution by 2200, for the +5 °C scenario, is 7.5 m as a result of instabilities coming into play in both West and East Antarctica. Introducing process correlations and tail dependences increases estimates by roughly 15%.

12.
Sci Total Environ ; 610-611: 1251-1261, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28851145

ABSTRACT

Coastal flood protection measures have been widely implemented to improve flood resilience. However, protection levels vary among coastal megacities globally. This study compares the distinct flood protection standards for two coastal megacities, New York City and Shanghai, and investigates potential influences such as risk factors and past flood events. Extreme value analysis reveals that, compared to NYC, Shanghai faces a significantly higher flood hazard. Flood inundation analysis indicates that Shanghai has a higher exposure to extreme flooding. Meanwhile, Shanghai's urban development, population, and economy have increased much faster than NYC's over the last three decades. These risk factors provide part of the explanation for the implementation of a relatively high level of protection (e.g. reinforced concrete sea-wall designed for a 200-year flood return level) in Shanghai and low protection (e.g. vertical brick and stone walls and sand dunes) in NYC. However, individual extreme flood events (typhoons in 1962, 1974, and 1981) seem to have had a greater impact on flood protection decision-making in Shanghai, while NYC responded significantly less to past events (with the exception of Hurricane Sandy). Climate change, sea level rise, and ongoing coastal development are rapidly changing the hazard and risk calculus for both cities and both would benefit from a more systematic and dynamic approach to coastal protection.

13.
Science ; 356(6345): 1362-1369, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28663496

ABSTRACT

Estimates of climate change damage are central to the design of climate policies. Here, we develop a flexible architecture for computing damages that integrates climate science, econometric analyses, and process models. We use this approach to construct spatially explicit, probabilistic, and empirically derived estimates of economic damage in the United States from climate change. The combined value of market and nonmarket damage across analyzed sectors-agriculture, crime, coastal storms, energy, human mortality, and labor-increases quadratically in global mean temperature, costing roughly 1.2% of gross domestic product per +1°C on average. Importantly, risk is distributed unequally across locations, generating a large transfer of value northward and westward that increases economic inequality. By the late 21st century, the poorest third of counties are projected to experience damages between 2 and 20% of county income (90% chance) under business-as-usual emissions (Representative Concentration Pathway 8.5).

15.
Popul Environ ; 38(3): 286-308, 2017.
Article in English | MEDLINE | ID: mdl-28260827

ABSTRACT

This study investigates the effects of climatic variations and extremes captured by variability in temperature, precipitation, and incidents of typhoons on aggregate inter-provincial migration within the Philippines using panel data. Our results indicate that a rise in temperature and to some extent increased typhoon activity increase outmigration, while precipitation does not have a consistent, significant effect. We also find that temperature and typhoons have significant negative effects on rice yields, a proxy for agricultural productivity, and generate more outmigration from provinces that are more agriculturally dependent and have a larger share of rural population. Finally, migration decisions of males, younger individuals, and those with higher levels of education are more sensitive to rising temperature and typhoons. We conclude that temperature increase and to some extent typhoon activities promote migration, potentially through their negative effect on crop yields. The migration responses of males, more educated, and younger individuals are more sensitive to these climatic impacts.

16.
Science ; 354(6318): 1375-1377, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27980170
20.
Proc Natl Acad Sci U S A ; 111(27): 9780-5, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24958887

ABSTRACT

We present a microlevel study to simultaneously investigate the effects of variations in temperature and precipitation along with sudden natural disasters to infer their relative influence on migration that is likely permanent. The study is made possible by the availability of household panel data from Indonesia with an exceptional tracking rate combined with frequent occurrence of natural disasters and significant climatic variations, thus providing a quasi-experiment to examine the influence of environment on migration. Using data on 7,185 households followed over 15 y, we analyze whole-household, province-to-province migration, which allows us to understand the effects of environmental factors on permanent moves that may differ from temporary migration. The results suggest that permanent migration is influenced by climatic variations, whereas episodic disasters tend to have much smaller or no impact on such migration. In particular, temperature has a nonlinear effect on migration such that above 25 °C, a rise in temperature is related to an increase in outmigration, potentially through its impact on economic conditions. We use these results to estimate the impact of projected temperature increases on future permanent migration. Though precipitation also has a similar nonlinear effect on migration, the effect is smaller than that of temperature, underscoring the importance of using an expanded set of climatic factors as predictors of migration. These findings on the minimal influence of natural disasters and precipitation on permanent moves supplement previous findings on the significant role of these variables in promoting temporary migration.


Subject(s)
Climate Change , Disasters , Human Migration , Economics , Humans , Indonesia , Nonlinear Dynamics , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...