Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(31): e202304474, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37184155

ABSTRACT

Optical storage and photon quantification systems based on sensitive photoreactions have numerous applications. Herein, we report a highly efficient photocatalytic reaction, in which ruthenium photoredox catalysis is combined with a 1,2-dioxetane from which chemiluminescence can be triggered. In this system, blue light irradiation as optical input enables a defined inverse correlation with base-triggered, blue light emission as optical output. Comparison of readout by 1 H NMR and chemiluminescence, relative to previous optical input, underlines the reliability and usefulness of the ruthenium-dioxetane system for optical storage, sensing and ruthenium detection.

2.
Org Lett ; 25(1): 76-81, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36595351

ABSTRACT

Functionalizations of arenes and alkenes via additive-free radical reactions using highly photosensitive, fluorescein-derived diazonium salts are described. The particular properties of the diazonium salts enable unique Meerwein-type carbohydroxylations of non-activated alkenes, which can be rationalized by a reaction mechanism involving forth and back electron transfer from and to the xanthene subunit of the fluorescein moiety.

3.
J Org Chem ; 86(9): 6228-6238, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33900767

ABSTRACT

The synthesis of pyridazinium salts was achieved from readily available phenylazosulfonates in a single reaction step. The reaction proceeds via the formation of short-lived phenyldiazenes, which-owing to the strongly acidic conditions-are partially protonated. The phenyldiazenes then undergo a rapid cycloaddition to furans to give pyridazinium salts via elimination of water. The fact that the pyridazinium synthesis shows a low sensitivity toward oxygen, although phenyldiazenes occur as intermediates, can be explained by the very fast cycloaddition step and the partial protonation of the phenyldiazene.

SELECTION OF CITATIONS
SEARCH DETAIL