Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36673022

ABSTRACT

Rigidity in Parkinson's disease (PD) is assessed by clinical scales, mostly the Unified Parkinson's Disease Rating Scale of the Movement Disorders Society (MDS-UPDRS). While the MDS-UPDRS-III ranges on an integer from 0 to 4, we investigated whether muscle ultrasound shear wave elastography (SWE) offers a refined assessment. Ten PD patients (five treated with deep brain stimulation (DBS) and levodopa, five with levodopa only) and ten healthy controls were included. Over a period of 80 min, both the SWE value and the item 22b-c of the MDS-UPDRS-III were measured at 5 min intervals. The measurements were performed bilaterally at the biceps brachii muscle (BB) and flexor digitorum profundus muscle in flexion and passive extension. Rigidity was modified and tracked under various therapeutic conditions (with and without medication/DBS). The feasibility of SWE for objective quantification was evaluated by correlation with the UPDRS-III: considering all positions and muscles, there was already a weak correlation (r = 0.01, p < 0.001)­in a targeted analysis, the BB in passive extension showed a markedly higher correlation (r = 0.494, p < 0.001). The application of dopaminergic medication and DBS resulted in statistically significant short-term changes in both clinical rigidity and SWE measurements in the BB (p < 0.001). We conclude that rigidity is reflected in the SWE measurements, indicating that SWE is a potential non-invasive quantitative assessment tool for PD.

2.
Diagnostics (Basel) ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35204451

ABSTRACT

Ultrasound shear wave elastography (SWE) is an increasingly used imaging modality that expands clinical ultrasound by measuring the elasticity of various tissues, such as the altered elasticity of tumors. Peripheral nerve tumors are rare, have been well-characterized by B-mode-ultrasound, but have not yet been investigated with SWE. Given the lack of studies, a first step would be to investigate homogeneous peripheral nerve tumors (PNTs), histologically neurofibromas or schwannomas, which can occur in multiple in neurofibromatosis type 1 and 2 (NF1 and 2), respectively. Hence, we measured shear wave velocity (SWV) in 30 PNTs of 11 patients with NF1 within the median nerve. The SWV in PNTs ranged between 2.8 ± 0.8 m/s and correlated with their width and approximate volume but not with their length or height. Furthermore, we determined the extent to which PNTs alter the SWV of the median nerve for three positions of the wrist joint: neutral (zero-degree), individual maximal flexion and maximal extension. Here, SWV was decreased in NF1 patients compared to age- and sex-matched controls (p = 0.029) during maximal wrist extension. We speculate that the presence of PNTs may have a biomechanical impact on peripheral nerves which has not been demonstrated yet.

3.
Front Physiol ; 12: 724755, 2021.
Article in English | MEDLINE | ID: mdl-34975515

ABSTRACT

So far, surface electromyography (sEMG) has been the method of choice to detect and evaluate muscle fatigue. However, recent advancements in non-cryogenic quantum sensors, such as optically pumped magnetometers (OPMs), enable interesting possibilities to flexibly record biomagnetic signals. Yet, a magnetomyographic investigation of muscular fatigue is still missing. Here, we simultaneously used sEMG (4 surface electrode) and OPM-based magnetomyography (OPM-MMG, 4 sensors) to detect muscle fatigue during a 3 × 1-min isometric contractions of the left rectus femoris muscle in 7 healthy participants. Both signals exhibited the characteristic spectral compression distinctive for muscle fatigue. OPM-MMG and sEMG slope values, used to quantify the spectral compression of the signals, were positively correlated, displaying similarity between the techniques. Additionally, the analysis of the different components of the magnetic field vector enabled speculations regarding the propagation of the muscle action potentials (MAPs). Altogether these results show the feasibility of the magnetomyographic approach with OPMs and propose a potential alternative to sEMG for the study of muscle fatigue.

SELECTION OF CITATIONS
SEARCH DETAIL
...