Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Photosynth Res ; 113(1-3): 191-206, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22843101

ABSTRACT

Exposure of control (non-hardened) Arabidopsis leaves to high light stress at 5 °C resulted in a decrease of both photosystem II (PSII) (45 %) and Photosystem I (PSI) (35 %) photochemical efficiencies compared to non-treated plants. In contrast, cold-acclimated (CA) leaves exhibited only 35 and 22 % decrease of PSII and PSI photochemistry, respectively, under the same conditions. This was accompanied by an accelerated rate of P700(+) re-reduction, indicating an up-regulation of PSI-dependent cyclic electron transport (CET). Interestingly, the expression of the NDH-H gene and the relative abundance of the Ndh-H polypeptide, representing the NDH-complex, decreased as a result of exposure to low temperatures. This indicates that the NDH-dependent CET pathway cannot be involved and the overall stimulation of CET in CA plants is due to up-regulation of the ferredoxin-plastoquinone reductase, antimycin A-sensitive CET pathway. The lower abundance of NDH complex also implies lower activity of the chlororespiratory pathway in CA plants, although the expression level and overall abundance of the other well-characterized component involved in chlororespiration, the plastid terminal oxidase (PTOX), was up-regulated at low temperatures. This suggests increased PTOX-mediated alternative electron flow to oxygen in plants exposed to low temperatures. Indeed, the estimated proportion of O(2)-dependent linear electron transport not utilized in carbon assimilation and not directed to photorespiration was twofold higher in CA Arabidopsis. The possible involvement of alternative electron transport pathways in inducing greater resistance of both PSII and PSI to high light stress in CA plants is discussed.


Subject(s)
Acclimatization/radiation effects , Arabidopsis/physiology , Electrons , Light , Photochemical Processes/radiation effects , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Acclimatization/drug effects , Arabidopsis/drug effects , Arabidopsis/radiation effects , Carbon Dioxide/metabolism , Cold Temperature , Densitometry , Electron Transport/drug effects , Electron Transport/radiation effects , Fluorescence , Glyceraldehyde/pharmacology , Immunoblotting , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Photons , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Stress, Physiological/drug effects , Stress, Physiological/radiation effects , Time Factors , Xanthophylls/metabolism
2.
Biochim Biophys Acta ; 1817(8): 1277-84, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22465025

ABSTRACT

Exposure of wild type (WT) and plastocyanin coding petE gene deficient mutant (ΔpetE) of Synechococcus cells to low iron growth conditions was accompanied by similar iron-stress induced blue-shift of the main red Chl a absorption peak and a gradual decrease of the Phc/Chl ratio, although ΔpetE mutant was more sensitive when exposed to iron deficient conditions. Despite comparable iron stress induced phenotypic changes, the inactivation of petE gene expression was accompanied with a significant reduction of the growth rates compared to WT cells. To examine the photosynthetic electron fluxes in vivo, far-red light induced P700 redox state transients at 820nm of WT and ΔpetE mutant cells grown under iron sufficient and iron deficient conditions were compared. The extent of the absorbance change (ΔA(820)/A(820)) used for quantitative estimation of photooxidizable P700(+) indicated a 2-fold lower level of P700(+) in ΔpetE compared to WT cells under control conditions. This was accompanied by a 2-fold slower re-reduction rate of P700(+) in the ΔpetE indicating a lower capacity for cyclic electron flow around PSI in the cells lacking plastocyanin. Thermoluminescence (TL) measurements did not reveal significant differences in PSII photochemistry between control WT and ΔpetE cells. However, exposure to iron stress induced a 4.5 times lower level of P700(+), 2-fold faster re-reduction rate of P700(+) and a temperature shift of the TL peak corresponding to S(2)/S(3)Q(B)(-) charge recombination in WT cells. In contrast, the iron-stressed ΔpetE mutant exhibited only a 40% decrease of P700(+) and no significant temperature shift in S(2)/S(3)Q(B)(-) charge recombination. The role of mobile electron carriers in modulating the photosynthetic electron fluxes and physiological acclimation of cyanobacteria to low iron conditions is discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Subject(s)
Iron/metabolism , Photosystem I Protein Complex/physiology , Plastocyanin/physiology , Synechococcus/metabolism , Acclimatization , Electron Transport
3.
FEBS Lett ; 580(11): 2797-802, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16674953

ABSTRACT

Acclimation of wild type and the chlorina F2 mutant of barley to either high light or low temperature results in a 2- to 3-fold increase in non-photochemical quenching which occurred independently of either energy-dependent quenching (qE), xanthophyll cycle-mediated antenna quenching or state transitions. Results of in vivo thermoluminescence measurements used to address this conundrum indicated that excitation pressure regulates the temperature gap for S(2)Q(B)(-) and S(2)Q(A)(-) charge recombinations within photosystem II reaction centers. This is discussed in terms of photoprotection through non-radiative charge recombination.


Subject(s)
Acclimatization/physiology , Hordeum/metabolism , Hordeum/radiation effects , Light , Photosystem II Protein Complex/metabolism , Temperature , Hordeum/genetics , Hordeum/growth & development , Photosynthesis/radiation effects , Photosystem II Protein Complex/genetics
4.
Planta ; 215(3): 457-65, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12111228

ABSTRACT

The potential of photosynthesis to recover from winter stress was studied by following the thermoluminescence (TL) and chlorophyll fluorescence changes of winter pine needles during the exposure to room temperature (20 degrees C) and an irradiance of 100 micromol m(-2) s(-1). TL measurements of photosystem II (PSII) revealed that the S(2)Q(B)(-) charge recombinations (the B-band) were shifted to lower temperatures in winter pine needles, while the S(2)Q(A)(-) recombinations (the Q-band) remained close to 0 degrees C. This was accompanied by a drastically reduced (65%) PSII photochemical efficiency measured as F(v)/ F(m,) and a 20-fold faster rate of the fluorescence transient from F(o) to F(m) as compared to summer pine. A strong positive correlation between the increase in the photochemical efficiency of PSII and the increase in the relative contribution of the B-band was found during the time course of the recovery process. The seasonal dynamics of TL in Scots pine needles studied under field conditions revealed that between November and April, the contribution of the Q- and B-bands to the overall TL emission was very low (less than 5%). During spring, the relative contribution of the Q- and B-bands, corresponding to charge recombination events between the acceptor and donor sides of PSII, rapidly increased, reaching maximal values in late July. A sharp decline of the B-band was observed in late summer, followed by a gradual decrease, reaching minimal values in November. Possible mechanisms of the seasonally induced changes in the redox properties of S(2)/S(3)Q(B)(-) recombinations are discussed. It is proposed that the lowered redox potential of Q(B) in winter needles increases the population of Q(A)(-), thus enhancing the probability for non-radiative P680(+)Q(A)(-) recombination. This is suggested to enhance the radiationless dissipation of excess light within the PSII reaction center during cold acclimation and during cold winter periods.


Subject(s)
Photosynthesis , Pinus/physiology , Seasons , Acclimatization , Chlorophyll/metabolism , Diuron/pharmacology , Electron Transport , Kinetics , Light-Harvesting Protein Complexes , Luminescent Measurements , Photosynthetic Reaction Center Complex Proteins/drug effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosystem II Protein Complex , Pinus sylvestris , Temperature
5.
Photochem Photobiol ; 74(3): 431-7, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11594057

ABSTRACT

Under conditions of iron deficiency certain cyanobacteria induce a chlorophyll (Chl)-binding protein, CP43', which is encoded by the isiA gene. We have previously suggested that CP43' functions as a nonradiative dissipator of light energy. To further substantiate its functional role an isiA overexpression construct was introduced into the genome of a cyanobacterium Synechococcus sp. PCC 7942 (giving isiAoe cells). The presence of functional CP43' in isiAoe cells was confirmed by Western blot as well as by the presence of a characteristic blueshift of the red Chl a absorption peak and a notable increase in the 77 K fluorescence peak at 685 nm. Compared to wild-type cells isiAoe cells, with induced CP43', had both smaller functional antenna size and decreased yields of room temperature Chl fluorescence at various light irradiances. These observations strongly suggest that isiAoe cells, with induced CP43', have an increased capacity for dissipating light energy as heat. In agreement with this hypothesis isiAoe cells were also more resistant to photoinhibition of photosynthesis than wild-type cells. Based on these results we have further strengthened the hypothesis that CP43' functions as a nonradiative dissipator of light energy, thus protecting photosystem II from excessive excitation under iron-deficient conditions.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Light-Harvesting Protein Complexes , Bacterial Proteins/genetics , Bacterial Proteins/radiation effects , Carrier Proteins/genetics , Carrier Proteins/radiation effects , Cyanobacteria/genetics , Genes, Bacterial/drug effects , Iron/metabolism , Isopropyl Thiogalactoside/pharmacology , Light , Mutation , Photobiology , Photosynthesis , Spectrometry, Fluorescence
6.
Planta ; 213(4): 575-85, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11556790

ABSTRACT

As shown before [C. Ottander et al. (1995) Planta 197:176-183], there is a severe inhibition of the photosystem (PS) II photochemical efficiency of Scots pine (Pinus sylvestris L.) during the winter. In contrast, the in vivo PSI photochemistry is less inhibited during winter as shown by in vivo measurements of deltaA820/A820 (P700+). There was also an enhanced cyclic electron transfer around PSI in winter-stressed needles as indicated by 4-fold faster reduction kinetics of P700+. The differential functional stability of PSII and PSI was accompanied by a 3.7-fold higher intersystem electron pool size, and a 5-fold increase in the stromal electron pool available for P700+ reduction. There was also a strong reduction of the QB band in the thermoluminescence glow curve and markedly slower Q-A re-oxidation in needles of winter pine, indicating an inhibition of electron transfer between QA and QB. The data presented indicate that the plastoquinone pool is largely reduced in winter pine, and that this reduced state is likely to be of metabolic rather than photochemical origin. The retention of PSI photochemistry, and the suggested metabolic reduction of the plastoquinone pool in winter stressed needles of Scots pine are discussed in terms of the need for enhanced photoprotection of the needles during the winter and the role of metabolically supplied energy for the recovery of photosynthesis from winter stress in evergreens.


Subject(s)
Adaptation, Physiological , Photosynthesis/physiology , Photosynthetic Reaction Center Complex Proteins/metabolism , Pinus/physiology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Chlorophyll/metabolism , Electron Transport , Light-Harvesting Protein Complexes , Oxidation-Reduction , Photochemistry , Pinus sylvestris , Plant Leaves/physiology , Plastoquinone/metabolism , Seasons , Temperature
7.
Planta ; 214(2): 295-303, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11800395

ABSTRACT

The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold acclimation is altered by limitations at the level of consumption of reducing power in carbon metabolism.


Subject(s)
Acclimatization/physiology , Arabidopsis/physiology , Chloroplasts/physiology , Photosynthesis/physiology , Adenosine Triphosphate/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/radiation effects , Chlorophyll/metabolism , Chlorophyll A , Cold Temperature , Fluorescence , Light , Light-Harvesting Protein Complexes , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Oxygen Consumption/physiology , Oxygen Consumption/radiation effects , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Plant Leaves/physiology , Starch/metabolism , Sucrose/metabolism
8.
FEBS Lett ; 485(2-3): 173-7, 2000 Nov 24.
Article in English | MEDLINE | ID: mdl-11094162

ABSTRACT

Although exposure of Synechococcus sp. PCC 7942 to iron stress induced the accumulation of the isiA gene product (CP43') compared with non-stressed controls, immunodetection of the N-terminus of cytochrome (Cyt) f indicated that iron stress not only reduced the content of the 40 kDa, heme-binding, Cyt f polypeptide by 32% but it also specifically induced the accumulation of a new, 23 kDa, non-heme-binding, putative Cyt f polypeptide. Concomitantly, iron stress restricted intersystem electron transport based on the in vivo reduction of P700(+), monitored as delta A(820)/A(820) in the presence and absence of electron transport inhibitors, as well as the inhibition of the Emerson enhancement effect on O(2) evolution. However, iron stress appeared to be associated with enhanced rates of PS I cyclic electron transport, low rates of PS I-driven photoreduction of NADP(+) but comparable rates for PS II+PS I photoreduction of NADP(+) relative to controls. We hypothesize that Synechococcus sp. PCC 7942 exhibits a dynamic capacity to uncouple PS II and PS I electron transport, which may allow for the higher than expected growth rates observed during iron stress.


Subject(s)
Cyanobacteria/drug effects , Cyanobacteria/metabolism , Electron Transport/drug effects , Iron/pharmacology , Photosynthesis/drug effects , Chlorophyll/metabolism , Cytochromes/metabolism , Cytochromes f , Light-Harvesting Protein Complexes , NADP/metabolism , Photosynthetic Reaction Center Complex Proteins/antagonists & inhibitors
9.
Eur Biophys J ; 29(3): 214-20, 2000.
Article in English | MEDLINE | ID: mdl-10968213

ABSTRACT

We address the segregation of photosystems I (PSI) and II (PSII) in thylakoid membranes by means of a molecular dynamics method. We assume a two-dimensional (in-plane) problem with PSI and PSII being represented by particles with different values of negative charge. The pair interactions between particles include a screened Coulomb repulsive part and am exponentially decaying attractive part. Our modeling results suggest that the system may have a complicated phase behavior, including a quasi-crystalline phase at low ionic screening, a disordered phase and, in addition, a possible "clotting" agglomerate phase at high screening where the photosystems tend to clot together. The relevance of the observed phenomena to the stacking of thylakoid membranes is discussed.


Subject(s)
Photosynthetic Reaction Center Complex Proteins , Plants/chemistry , Thylakoids/chemistry , Biophysical Phenomena , Biophysics , Ions , Models, Biological , Models, Statistical
10.
Biosystems ; 50(1): 71-82, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10235652

ABSTRACT

This study addresses the issue of robustness of biological systems with respect to microscopic parameters, especially the emergence of robustness as a consequence of time-scale hierarchy, applying naive thermodynamic and dynamic assumptions. Theoretical considerations of how the time-scale hierarchy can decouple physiological regulatory mechanisms are illustrated by two model systems involving the photosynthetic apparatus of green plants.


Subject(s)
Plant Physiological Phenomena , Kinetics , Photosynthesis , Thermodynamics , Time
11.
Mol Microbiol ; 32(1): 123-9, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10216865

ABSTRACT

Iron deficiency is known to suppress primary productivity in both marine and freshwater ecosystems. In response to iron deficiency, certain cyanobacteria induce a chlorophyll (Chl)-protein complex, CP43', which is encoded by the isiA gene. The deduced amino-acid sequence of CP43' predicts some structural similarity to the CP43 polypeptide of photosystem II, but the function of CP43' remains uncertain. In order to assess its physiological role, the isiA gene of a cyanobacterium, Synechococcus sp. PCC7942, was inactivated by insertion mutagenesis (giving isiA cells). Compared with isiA cells, under iron deprivation, wild-type cells showed both lower rates of photosystem II-mediated O2 evolution at limiting light irradiances and decreased yields of room temperature Chl fluorescence at various irradiances. These observations strongly suggest that the decreased photosystem II activity in wild-type cells with CP43' is attributable to increased non-radiative dissipation of light energy. In agreement with this hypothesis, isiA cells were more susceptible to photoinhibition of photosynthesis than wild-type cells, resulting in much slower growth rates under iron limitation. Based on these results, we suggest that CP43' functions as a non-radiative dissipator of light energy, thus protecting photosystem II from excessive excitation under iron-deficient conditions.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/physiology , Carrier Proteins/genetics , Carrier Proteins/physiology , Cyanobacteria/genetics , Cyanobacteria/physiology , Iron/metabolism , Light-Harvesting Protein Complexes , Light/adverse effects , Photosynthetic Reaction Center Complex Proteins , Blotting, Southern , Chlorophyll/metabolism , Dose-Response Relationship, Radiation , Gene Expression , Photosynthesis/physiology , Photosystem II Protein Complex , Plasmids , Spectrophotometry , Time Factors , Transformation, Genetic
12.
FEBS Lett ; 444(1): 102-5, 1999 Feb 05.
Article in English | MEDLINE | ID: mdl-10037156

ABSTRACT

Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.


Subject(s)
Algal Proteins/metabolism , Carbon/metabolism , Carbonic Anhydrases/metabolism , Chlamydomonas reinhardtii/enzymology , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/metabolism , Animals , Benzoquinones/pharmacology , Bicarbonates/metabolism , Blotting, Western , Carbon Dioxide/metabolism , Cell Membrane/enzymology , Cell Membrane/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chloroplasts/enzymology , Chloroplasts/metabolism , Electron Transport/drug effects , Ethoxzolamide/pharmacology , Hydrogen-Ion Concentration , Light , Mutation , Oxygen/metabolism , Photosystem II Protein Complex
13.
Microbiol Mol Biol Rev ; 62(3): 667-83, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9729605

ABSTRACT

Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters FV/FM, FV'/FM',qp,qN, NPQ, and phiPS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters can be used to estimate the electron transport rate at the acclimated growth light intensity.


Subject(s)
Chlorophyll/analysis , Cyanobacteria/physiology , Fluorometry/methods , Photosynthesis/physiology , Acclimatization/physiology
14.
Cryobiology ; 37(1): 38-45, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9698428

ABSTRACT

Freezing injury of plants may be caused by the deleterious reactions of active oxygen species, and free-radical scavenging systems may be important in the alleviation of freezing stress. To test the feasibility of this hypothesis, enzymes and metabolites that cooperatively scavenge O2 and H2O2 were analyzed in Scots pine (Pinus sylvestris L.) seedlings during a stepwise cold acclimation procedure. Elevated levels of enzymatic scavengers such as ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were found, along with increased freezing tolerance during cold acclimation, supporting the hypothesis. Induction of the scavenging systems during acclimation is discussed in relation to freezing tolerance.


Subject(s)
Acclimatization/physiology , Plant Physiological Phenomena , Reactive Oxygen Species/physiology , Cold Temperature
15.
Proc Natl Acad Sci U S A ; 95(1): 364-9, 1998 Jan 06.
Article in English | MEDLINE | ID: mdl-9419381

ABSTRACT

Current ambient UV-B levels can significantly depress productivity in aquatic habitats, largely because UV-B inhibits several steps of photosynthesis, including the photooxidation of water catalyzed by photosystem II. We show that upon UV-B exposure the cyanobacterium Synechococcus sp. PCC 7942 rapidly changes the expression of a family of three psbA genes encoding photosystem II D1 proteins. In wild-type cells the psbAI gene is expressed constitutively, but strong accumulations of psbAII and psbAIII transcripts are induced within 15 min of moderate UV-B exposure (0.4 W/m2). This transcriptional response causes an exchange of two distinct photosystem II D1 proteins. D1:1 is encoded by psbAI, but on UV-B exposure, it is largely replaced by the alternate D1:2 form, encoded by both psbAII and psbAIII. The total content of D1 and other photosystem II reaction center protein, D2, remained unchanged throughout the UV exposure, as did the content and composition of the phycobilisome. Wild-type cells suffered only slight transient inhibition of photosystem II function under UV-B exposure. In marked contrast, under the same UV-B treatment, a mutant strain expressing only psbAI suffered severe (40%) and sustained inhibition of photosystem II function. Another mutant strain with constitutive expression of psbAII and psbAIII was almost completely resistant to the UV-B treatment, showing no inhibition of photosystem II function and only a slight drop in electron transport. In Synechococcus the rapid exchange of alternate D1 forms, therefore, accounts for much of the cellular resistance to UV-B inhibition of photosystem II activity and photosynthetic electron transport. This molecular plasticity may be an important element in community-level responses to UV-B, where susceptibility to UV-B inhibition of photosynthesis changes diurnally.


Subject(s)
Cyanobacteria/radiation effects , Photosynthetic Reaction Center Complex Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , Cyanobacteria/genetics , Gene Expression/radiation effects , Light-Harvesting Protein Complexes , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosynthetic Reaction Center Complex Proteins/radiation effects , Photosystem II Protein Complex , Phycobilisomes , Plant Proteins/metabolism , Plant Proteins/radiation effects , Ultraviolet Rays
16.
Plant Physiol ; 111(4): 1293-1298, 1996 Aug.
Article in English | MEDLINE | ID: mdl-12226362

ABSTRACT

An important factor in photosynthetic ecophysiology is the light regime that a photobiont is acclimated to exploit. In a wide range of cyanobacteria and cyano-lichens, the easily measured fluorescence parameters, coefficient of nonphotochemical quenching of photosystem II variable fluorescence (qN) and nonphotochemical quenching, decline to a minimum near the acclimated growth light intensity. This characteristic pattern predicts the integrated light regime to which populations are acclimated, information that is particularly useful for cyanobacteria or cyano-lichens from habitats with highly variable light intensities. qN reflects processes that compete with photosystem II photochemistry for absorbed excitation energy. In cyanobacteria, we find no evidence for energy-dependent quenching mechanisms, which are the predominant components of qN in higher plants. Instead, in cyanobacteria, qN correlates closely with the excitation flow from the phycobilisome to photosystem I, indicating that qN reflects the state transition mechanism for equilibration of excitation from the phycobilisome to the two photosystems.

17.
Plant Physiol ; 111(3): 713-719, 1996 Jul.
Article in English | MEDLINE | ID: mdl-12226322

ABSTRACT

In the dark, all decarboxylation reactions are associated with the oxidase reactions of mitochondrial electron transport. In the light, photorespiration is also active in photosynthetic cells. In winter rye (Secale cereale L.), cold hardening resulted in a 2-fold increase in the rate of dark respiratory CO2 release from leaves compared with nonhardened (NH) controls. However, in the light, NH and cold-hardened (CH) leaves had comparable rates of oxidase decarboxylation and total intracellular decarboxylation. Furthermore, whereas CH leaves showed similar rates of total oxidase decarboxylation in the dark and light, NH leaves showed a 2-fold increase in total oxidase activity in the light compared with the dark. Light suppressed oxidase decarboxylation of end products of photosynthesis 2-fold in NH leaves and 3-fold in CH leaves in air. However, in high-CO2, light did not suppress the oxidase decarboxylation of end products. Thus, the decrease in oxidase decarboxylation of end products observed in the light and in air reflected glycolate-cycle-related inhibition of tricarboxylic acid cycle activity. We also showed that the glycolate cycle was involved in the decarboxylation of the end products of photosynthesis in both NH and CH leaves, suggesting a flow of fixed carbon out of the starch pool in the light.

18.
Plant Mol Biol ; 30(3): 467-78, 1996 Feb.
Article in English | MEDLINE | ID: mdl-8605299

ABSTRACT

Over-expression of the psbAIII gene encoding for the D1 protein (form II; D1:2) of the photosystem II reaction centre in the Synechococcus sp. PCC 7942 was studied using a tac promoter and the lacIQ system. Over-expression was induced with 40 microgram/ml IPTG in the growth medium for either 6 or 12 h at growth irradiance (50 mumol photons m-2 s-1). This treatment doubled the amount of psbAII/III mRNA and the D1:2 protein in membranes but decreased the amount of psbAI messages and the D1:1 protein. The total amount of both heterodimeric reaction centre proteins, D1 and D2, remained constant under growth light conditions, indicating that the number of PSII centres in the membranes was not affected, only the form of the D1 protein was changed from D1:1 to D1:2 in most centres. When the cells were photoinhibited either at 500 or 1000 mumol photons m-2 s-1, in the presence or absence of the protein synthesis inhibitor lincomycin, the D1:2 protein remained at a higher level in cells in which over-expression had been induced by IPTG. These cells were also less prone to photoinhibition of PSII. It is suggested that the tolerance of cells to photoinhibition increases when most PSII reaction centres contain the D1:2 protein at the beginning of high irradiance. This tolerance is further strengthened by maintaining psbAIII gene over-expression during the photoinhibitory treatment.


Subject(s)
Cyanobacteria/genetics , Photosynthetic Reaction Center Complex Proteins/genetics , Amino Acid Sequence , Base Sequence , Blotting, Southern , Cloning, Molecular , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Dose-Response Relationship, Radiation , Gene Expression Regulation, Plant/radiation effects , Light , Molecular Sequence Data , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosystem II Protein Complex
19.
Photosynth Res ; 47(2): 131-44, 1996 Feb.
Article in English | MEDLINE | ID: mdl-24301821

ABSTRACT

Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697-698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.

20.
EMBO J ; 14(22): 5457-66, 1995 Nov 15.
Article in English | MEDLINE | ID: mdl-8521802

ABSTRACT

Synechococcus sp. PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light. We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light. Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2. During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass. D1:2* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor. After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains. Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process. These treatments all increase excitation pressure on photosystem II relative to electron transport. Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.


Subject(s)
Cyanobacteria/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Antioxidants/pharmacology , Cell Division , Cyanobacteria/drug effects , Dibromothymoquinone/pharmacology , Diuron/pharmacology , Electron Transport , Photosynthesis , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/drug effects , Photosynthetic Reaction Center Complex Proteins/genetics , Photosystem II Protein Complex , RNA, Messenger/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...