Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Neuroscience ; 270: 1-11, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24726488

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) exerts neuroprotective and neurorestorative effects on neurons and GDNF plays a significant role in maintenance of the dopamine neurons utilizing grafting to create a nigrostriatal microcircuit of Gdnf knockout (Gdnf(-/-)) tissue. To further evaluate the role of GDNF on organization of the nigrostriatal system, single or double grafts of ventral mesencephalon (VM) and lateral ganglionic eminence (LGE) with mismatches in Gdnf genotypes were performed. The survival of single grafts was monitored utilizing magnetic resonance imaging (MRI) and cell survival and graft organization were evaluated with immunohistochemistry. The results revealed that the size of VM single grafts did not change over time independent of genotype, while the size of the LGE transplants was significantly reduced already at 2 weeks postgrafting when lacking GDNF. Lack of GDNF did not significantly affect the survival of tyrosine hydroxylase (TH)-positive neurons in single VM grafts. However, the survival of TH-positive neurons was significantly reduced in VM derived from Gdnf(+/+) when co-grafted with LGE from the Gdnf(-/-) tissue. In contrast, lack of GDNF in the VM portion of co-grafts had no effect on the survival of TH-positive neurons when co-grafted with LGE from Gdnf(+/+) mice. The TH-positive innervation of co-grafts was sparse when the striatal co-grafts were derived from the Gdnf(-/-) tissue while dense and patchy when innervating LGE producing GDNF. The TH-positive innervation overlapped with the organization of dopamine and cyclic AMP-regulated phosphoprotein-relative molecular mass 32,000 (DARPP-32)-positive neurons, that was disorganized in LGE lacking GDNF production. In conclusion, GDNF is important for a proper striatal organization and for survival of TH-positive neurons in the presence of the striatal tissue.


Subject(s)
Corpus Striatum/growth & development , Corpus Striatum/physiology , Dopaminergic Neurons/physiology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Animals , Brain Tissue Transplantation , Cell Survival/physiology , Corpus Striatum/surgery , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Female , Genotyping Techniques , Glial Cell Line-Derived Neurotrophic Factor/genetics , Immunohistochemistry , Magnetic Resonance Imaging , Mesencephalon/embryology , Mesencephalon/physiology , Mesencephalon/transplantation , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism
2.
Biofizika ; 52(3): 476-85, 2007.
Article in Russian | MEDLINE | ID: mdl-17633537

ABSTRACT

Lateral diffusion in oriented bilayers of saturated cholesterol-containing phosphatidylcholines, dipalmitoylphosphatidylcholine and dimyrilstoylphosphatidylcholine upon their limiting hydration has been studied by NMR with impulse gradient of magnetic field. For both systems, similar dependences of the coefficient of lateral diffusion on temperature and cholesterol concentration were observed, which agree with the phase diagram showing the presence of regions of ordered and unordered liquid-crystalline phases and a two-phase region. Under similar conditions, the coefficient of lateral diffusion for dipalmytoylphosphatidylcholine has lower values, which is in qualitative agreement with its greater molecular mass. A comparison of data for dipalmytoylphosphatidylcholine with the results obtained earlier for dipalmytoylsphyngomyelin/cholesterol under the same conditions shows, despite a similarity in phase diagrams, greater (two- to threefold) differences in the values of the coefficient of lateral diffusion and a different mode of dependence of the coefficient on cholesterol concentration. A comparison of data for dimyrilstoylphosphatidylcholine with the results obtained previously shows that the values of the coefficient of lateral diffusion and the mode of its dependence on cholesterol concentration coincide in the region of higher concentrations (more than 15 mole %) and differ in the region of lower concentrations (below 15 mole %). The discrepancies may be explained by different contents of water in the systems during the measurements. At a limiting hydration (more than 35%) of water, the coefficient of lateral diffusion decreases with increasing cholesterol concentration. If the content of water is about 25% (as a result of equilibrium hydration from vapors), the coefficient of lateral diffusion of phosphatidylcholine is probably independent of cholesterol concentration. This results from a denser packing of molecules in the bilayer at a lower water concentration, an effect that competes with the ordering effect of cholesterol.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Diffusion , Nuclear Magnetic Resonance, Biomolecular
3.
Biochim Biophys Acta ; 1468(1-2): 329-44, 2000 Sep 29.
Article in English | MEDLINE | ID: mdl-11018677

ABSTRACT

A Acholeplasma laidlawii strain A-EF22 was grown in a medium supplemented with alpha-deuterated oleic acid. Phosphatidylglycerol (PG), the glucolipids monoglucosyldiacylglycerol (MGlcDAG), diglucosyldiacylglycerol (DGlcDAG) and monoacyldiglucosyldiacylglycerol, and the phosphoglucolipid glycerophosphoryldiglucosyldiacylglycerol (GPDGlcDAG) were purified, and the phase behaviour and molecular ordering for the individual lipids, as well as for mixtures of the lipids, were studied by (2)H-, (31)P-NMR and X-ray scattering methods. The chemical structure of all the A. laidlawii lipids, except PG, has been determined and verified previously; here also the chemical structure of PG was verified, utilising mass spectrometry and (1)H and (13)C high resolution NMR spectroscopy. For the first time, lipid dimers were found in the mass spectrometry measurements. The major findings in this work are: (1) addition of 50 mol% of PG to the non-lamellar-forming lipid MGlcDAG does not significantly alter the transition temperature between lamellar and non-lamellar phases; (2) the (2)H-NMR quadrupole splitting patterns obtained from the lamellar liquid crystalline phase are markedly different for PG on one hand, and DGlcDAG and GPDGlcDAG on the other hand; and (3) mixtures of PG and DGlcDAG or MGlcDAG give rise to (2)H-NMR spectra consisting of a superposition of splitting patterns of the individual lipids. These remarkable features show that the local ordering of the alpha-carbon of the acyl chains is different for PG than for MGlcDAG and DGlcDAG, and that this difference is preserved when PG is mixed with the glucolipids. The results obtained are interpreted in terms of differences in molecular shape and hydrophilicity of the different polar headgroups.


Subject(s)
Acholeplasma/chemistry , Glycolipids/chemistry , Membrane Lipids/chemistry , Methane/analogs & derivatives , Methane/chemistry , Phosphatidylglycerols/chemistry , Deuterium , Hydrocarbons , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry , Membrane Lipids/isolation & purification , Molecular Structure , X-Ray Diffraction
4.
Biophys J ; 75(6): 2877-87, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9826609

ABSTRACT

The cell-wall-less bacterium Acholeplasma laidlawii A-EF22 synthesizes eight glycerolipids. Some of them form lamellar phases, whereas others are able to form normal or reversed nonlamellar phases. In this study we examined the phase properties of total lipid extracts with limiting average acyl chain lengths of 15 and 19 carbon atoms. The temperature at which these extracts formed reversed hexagonal (HII) phases differed by 5-10 degreesC when the water contents were 20-30 wt%. Thus the cells adjust the ratio between lamellar-forming and nonlamellar-forming lipids to the acyl chain lengths. Because short acyl chains generally increase the potential of lipids to form bilayers, it was judged interesting to determine which of the A. laidlawii A lipids are able to form reversed nonlamellar phases with short acyl chains. The two candidates with this ability are monoacyldiglucosyldiacylglycerol (MADGlcDAG) and monoglucosyldiacylglycerol. The average acyl chain lengths were 14.7 and 15.1 carbon atoms, and the degrees of acyl chain unsaturation were 32 and 46 mol%, respectively. The only liquid crystalline phase formed by MADGlcDAG is an HII phase. Monoglucosyldiacylglycerol forms reversed cubic (Ia3d) and HII phases at high temperatures. Thus, even when the organism is grown with short fatty acids, it synthesizes two lipids that have the capacity to maintain the nonlamellar tendency of the lipid bilayer. MADGlcDAG in particular contributes very powerfully to this tendency.


Subject(s)
Acholeplasma laidlawii/chemistry , Lipids/chemistry , Acholeplasma laidlawii/growth & development , Acholeplasma laidlawii/metabolism , Biophysical Phenomena , Biophysics , Lipid Bilayers/chemistry , Lipid Metabolism , Lipids/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Thermodynamics , X-Ray Diffraction
5.
Chem Phys Lipids ; 85(1): 75-89, 1997 Jan 17.
Article in English | MEDLINE | ID: mdl-9032946

ABSTRACT

The chemical structure of a phosphoglucolipid from the membrane of the bacterium Acholeplasma laidlawii strain B-PG9 has been determined by high resolution NMR to be 1,2-diacyl-3-O-[glycerophosphoryl-6-O-(alpha-D-glucopyranosyl-(1 -->2)-O-alpha-D-glucopyranosyl)]-sn-glycerol (GPDGlcDAG). It was concluded that this lipid has exactly the same structure as one of the phosphoglucolipids from A. laidlawii strain A-EF22. By cryo transmission electron microscopy (cryo-TEM) and NMR diffusion techniques it was shown that, in highly diluted aqueous solutions, this membrane lipid forms long thread-like micelles in equilibrium with lipid vesicles. The cause of the occurrence of these different aggregates is discussed in terms of the varying molecular shapes of the lipid because of a heterogeneous composition of the acyl chains. A second membrane phosphoglucolipid from the bacterium, namely 1,2-diacyl-3-O-[glycerophosphoryl-6-O-(alpha-D- glucopyranosyl-(1 -->2)-monoacylglycerophosphoryl-6-O-alpha-D-glucopyranosyl)]-sn-gl ycerol (MABGPDGlcDAG), was found to form only a lamellar liquid crystalline phase coexisting with water.


Subject(s)
Acholeplasma laidlawii/chemistry , Glycolipids/chemistry , Membrane Lipids/chemistry , Magnetic Resonance Spectroscopy , Microscopy , Microscopy, Electron , Microscopy, Video , Molecular Conformation
6.
Biophys J ; 68(5): 1856-63, 1995 May.
Article in English | MEDLINE | ID: mdl-7612827

ABSTRACT

The phase equilibria of the system soybean phosphatidylcholine, diacylglycerol, and water has been determined using a combination of classical methods together with x-ray diffraction and NMR techniques. In particular, the extent of the phase regions of the lamellar, the reversed hexagonal, and the cubic phases have been determined. By pulsed field gradient 1H-NMR, the diffusion coefficients of all three components in a cubic phase composed of soybean phosphatidylcholine, diacylglycerol, and heavy water have been determined at 25 and 59 degrees C and also for the corresponding cubic phase composed of the chemically more well defined synthetic components 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoylglycerol (DOG), and heavy water. The extension of the phase region of the cubic phase did not seem to change appreciably for the two ternary systems studied. The translational diffusion coefficient of DOPC in this cubic phase is more than an order of magnitude smaller (3 x 10(-13) m2 s-1, 59 degrees C) than the lateral diffusion coefficient of DOPC in an oriented lipid bilayer (5 x 10(-12) m2 s-1, 35 degrees C), whereas the diffusion coefficients of water and DOG were found to be about two orders of magnitude larger than DOPC at 59 degrees C. It is concluded that the cubic phase is built built up of closed reversed micelles in accordance with the suggestion from previous x-ray diffraction studies.


Subject(s)
Diglycerides/chemistry , Micelles , Phosphatidylcholines/chemistry , Helianthus , Hydrogen , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Phosphorus , Plant Oils , Glycine max , Sunflower Oil , Water , X-Ray Diffraction
7.
Biophys J ; 68(2): 547-57, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7535115

ABSTRACT

A partial phase diagram of the system N,N-dimethyldodecylamine oxide (DDAO)/water/gramicidin D was determined by 2H-NMR. Both 2H2O and perdeuterated DDAO (DDAO-d31) were studied by solid state NMR techniques. Addition of gramicidin D to the micellar (L1), normal hexagonal (HI) and cubic (I) phases of DDAO induces phase separations, giving two-phase regions, which all contain a lamellar (L alpha) phase. The L alpha phase containing gramicidin is characterized by larger order parameters for DDAO-d31 compared with the corresponding order parameters in the L alpha and HI phases of DDAO-d31/H2O. The L alpha phase may stay in equilibrium with any other phase in the phase diagram. The DDAO exchange between the coexisting phases is slow on the NMR timescale, which is why the recorded NMR spectrum consists of superimposed spectra from the different phases occurring in the sample. Gramicidin D can be solubilized in appreciable quantities only in the lamellar phase of DDAO-d31. Increasing amounts of gramicidin in the liquid crystalline phases result in a continuous increase in the molecular ordering up to about 5 mol% gramicidin, where a plateau is reached. This is consistent with a recent theoretical model describing the influence on the ordering of lipids by a membrane protein with larger hydrophobic thickness than the lipid bilayer. The solvent used for dissolving gramicidin at the incorporation of the peptide in the lipid aggregates has no effect on the 2H-NMR lineshapes of DDAO-d31. It is concluded that gramicidin is solubilized in the L alpha phase and that it always adopts the channel conformation independent of a particular solvent. The channel conformation is also supported by CD studies. In some of the samples, macroscopic orientation of the lipid aggregates is observed. It is concluded that DDAO-d31 in the binary system favors an orientation with the long axis of the hydrocarbon chain perpendicular to the magnetic field, whereas when gramicidin D is present the hydrocarbon chain orients parallel to the magnetic field. This is explained by the fact that gramicidin aligns with its helical axis parallel to the magnetic field, thereby forcing also the DDAO-d31 molecules to obtain such an orientation.


Subject(s)
Detergents/chemistry , Dimethylamines/chemistry , Gramicidin/chemistry , Water/chemistry , Chemical Phenomena , Chemistry, Physical , Deuterium , Lipid Bilayers , Magnetic Resonance Spectroscopy , Protein Conformation , Solvents , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...