Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(19): 11687-11695, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35506443

ABSTRACT

The synthesis and characterization of benz-1,4-dioxane crown ethers (CEs) and some of its homologues are described and analyzed. The effect of added C-atom within the CE ring (increasing the hydrophobicity of the CE ring by increasing the number of CH2-units) on the Li+ and Mg2+ complexation within a liquid-liquid extraction (LLE) is investigated and thermodynamically analyzed. The complex stability constant K, the change of entropy ΔS and enthalpy ΔH, and the Gibbs energy ΔG are determined. The enhanced hydrophobicity of the CE ring results in stronger complexation stability of the Mg2+ complex, while the Li+ complexes are less favored. This effect mainly occurs due to the increased entropy term with improved hydrophobicity of the CE. These results indicate a stronger extraction of Li+ in Mg2+-containing aqueous resources if more hydrophilic CEs are used.

2.
Soft Matter ; 18(5): 934-937, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35044394

ABSTRACT

The compexation behavior of metals with free crown ethers (CE) and diblock copolymer-based CE is investigated. The latter shows at least 10 000 times stronger complexation than free CEs. On this basis, a highly stable CE complex within the polymer for efficient extraction of metal ions from low concentrations, e.g. lithium in seawater, is presented.

3.
Polymers (Basel) ; 13(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771234

ABSTRACT

The combination of polymerization-induced self-assembly (PISA) and reversible-addition fragmentation chain transfer (RAFT) emulsion polymerization offers a powerful technique to synthesize diblock copolymers and polymeric nanoparticles in a controlled manner. The RAFT emulsion diblock copolymerization of styrene and methacrylic acid (MAA) by using a trithiocarbonate as surfactant and RAFT agent was investigated. The Z-group of the RAFT agent was modified with a propyl-, butyl- and dodecyl- sidechain, increasing the hydrophobicity of the RAFT agent to offer well-controlled polymerization of poly(methacrylic acid)-block-polystyrene (PMAA-b-PS) diblock copolymers at high solid contents between 30-50 wt% in water. The kinetic data of the PMAA homopolymerization with the three different RAFT agents for various solvents was investigated as well as the RAFT emulsion polymerization of the diblock copolymers in pure water. While the polymerization of PMAA-b-PS with a propyl terminus as a Z-group suffered from slow polymerization rates at solid contents above 30 wt%, the polymerization with a dodecyl sidechain as a Z-group led to full conversion within 2 h, narrow molar mass distributions and all that at a remarkable solid content of up to 50 wt%.

4.
Macromol Rapid Commun ; 42(9): e2000746, 2021 May.
Article in English | MEDLINE | ID: mdl-33644940

ABSTRACT

The recovery of lithium from global water resources continues to be challenging due to interfering metal ions with similar solution properties. Hence, a lithium-selective diblock copolymer system containing crown ethers (CEs) is developed. A polystyrene-block-poly(methacrylic acid) diblock copolymer is synthesized first via a one-pot solution-emulsion reversible addition-fragmentation chain transfer polymerization. A subsequent Steglich esterification yields the CE functionalized polymer. The complexation properties with different alkali metals are first investigated by liquid-liquid extraction (LLE) in dichloromethane (DCM) - water systems using free benzo-9-crown (B9C3), benzo-12-crown-4 (B12C4), and benzo-15-crown-5 (B15C5) CEs as reference components, followed by the correspondingly CE-functionalized polymers. Extraction complexation constants in the aqueous phase are determined and the impact of the complexation constants on the extractability is estimated. The B9C3 CE is especially appealing since it has the smallest cavity size among all CEs. It is too small to complex sodium or potassium ions; however, it forms sandwich complexes with a lithium-ion resulting in extraordinary complexation constants in polymer systems avoiding other interfering alkali metal ions. On this basis, a new material for the efficient extraction of lithium ion traces in global water resources is established.


Subject(s)
Lithium , Metals, Alkali , Ions , Polymers , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...