Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 106(44): 18447-51, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19841269

ABSTRACT

More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.


Subject(s)
Agriculture , Air Pollution/analysis , Arecaceae/physiology , Nitrogen/analysis , Ozone/analysis , Plant Oils/analysis , Tropical Climate , Aircraft , Butadienes/analysis , Geography , Hemiterpenes/analysis , Monoterpenes/analysis , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Palm Oil , Pentanes/analysis , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Time Factors
2.
Nature ; 421(6919): 131-5, 2003 Jan 09.
Article in English | MEDLINE | ID: mdl-12520294

ABSTRACT

The consumption of methyl chloroform (1,1,1-trichloroethane), an industrial solvent, has been banned by the 1987 Montreal Protocol because of its ozone-depleting potential. During the 1990s, global emissions have decreased substantially and, since 1999, near-zero emissions have been estimated for Europe and the United States. Here we present measurements of methyl chloroform that are inconsistent with the assumption of small emissions. Using a tracer transport model, we estimate that European emissions were greater than 20 Gg in 2000. Although these emissions are not significant for stratospheric ozone depletion, they have important implications for estimates of global tropospheric hydroxyl radical (OH) concentrations, deduced from measurements of methyl chloroform. Ongoing emissions therefore cast doubt upon recent reports of a strong and unexpected negative trend in OH during the 1990s and a previously calculated higher OH abundance in the Southern Hemisphere compared to the Northern Hemisphere.

3.
Science ; 290(5493): 935-6, 2000 Nov 03.
Article in English | MEDLINE | ID: mdl-17749186
SELECTION OF CITATIONS
SEARCH DETAIL
...