Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(42): 54785-54803, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39215921

ABSTRACT

The study explored the post-wildfire elemental composition of parts (wood, bark, branch, cone, trunk, litter, twig, needle, sward, fallow, sapling, etc.) and by-products (biomass ashes, partly burnt parts, and char) of different woody species in the Bohemian Switzerland National Park, Czech Republic, and considered their effects on soils. Multi-elemental analysis of the fire by-products of the woody species was determined with inductively coupled plasma-optical emission spectrometry and mass spectrometry and compared with control biomass samples unaffected by wildfire. Most fire by-products were slightly alkaline, with acidic ashes obtained from blueberry wood. The by-products of the wildfire were characterized by varied total contents of macro (P, Ca, K, Mg, and S), micro (Na, Mn, Fe, Cu, and Zn), and other elements (B, Co, Mo, and V) vital to soil fertility and plant growth. The mean content of macro elements in the biomass ashes was up to 4.16 P, 23.5 Ca, 2.48 Mg, 63 K, and 5.57 S g kg-1. These values were comparatively lower than published data for ashes obtained under optimized conditions, e.g., those combusted in power generation facilities. Conversely, partly burnt parts-an indication of incomplete combustion-had higher 9.22 P, 79 Ca, and 5.99 Mg g kg-1 contents in spruce needles than in biomass ashes and the control. Variations in woody species and anthropogenic activities in areas of wildfires produced varied As, Cd, Cr, Ni, and Pb contents above EU fertilizer regulation. Caution in applying biomass ashes from wildfires on fields is required due to risk/toxic elements input from anthropogenic activities. Wildfire effects on the elemental composition of woody species can provide information on plant parts most suitable for biomass ashes for soil and ecosystem safety.


Subject(s)
Biomass , Wildfires , Wood , Czech Republic , Wood/chemistry , Parks, Recreational , Soil/chemistry
2.
J Phys Condens Matter ; 25(11): 116006, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23421995

ABSTRACT

Hematite, Fe(2)O(3), provides in principle a model system for multiferroic (ferromagnetic/ferroelastic) behavior at low levels of strain coupling. The elastic and anelastic behavior associated with magnetic phase transitions in a natural polycrystalline sample have therefore been studied by resonant ultrasound spectroscopy (RUS) in the temperature range from 11 to 1072 K. Small changes in softening and attenuation are interpreted in terms of weak but significant coupling of symmetry-breaking and non-symmetry-breaking strains with magnetic order parameters in the structural sequence R3(¯)c1'-->C2/c-->R3(¯)c. The R3(¯)c1'-->C2/c transition at T(N) = 946 ± 1 K is an example of a multiferroic transition which has both ferromagnetic (from canting of antiferromagnetically ordered spin moments) and ferroelastic (rhombohedral → monoclinic) character. By analogy with the improper ferroelastic transition in Pb(3)(PO(4))(2), W and W' ferroelastic twin walls which are also 60° and 120° magnetic domain walls should develop. These have been tentatively identified from microstructures reported in the literature. The very low attenuation in the stability field of the C2/c structure in the polycrystalline sample used in the present study, in comparison with the strong acoustic dissipation reported for single crystal samples, implies, however, that the individual grains each consist of a single ferroelastic domain or that the twin walls are strongly pinned by grain boundaries. This absence of attenuation allows an intrinsic loss mechanism associated with the transition point to be seen and interpreted in terms of local coupling of shear strains with fluctuations which have relaxation times in the vicinity of ~10(-8) s. The first order C2/c-->R3(¯)c (Morin) transition occurs through a temperature interval of coexisting phases but the absence of an acoustic loss peak suggests that the relaxation time for interface motion is short in comparison with the time scale of the applied stress (at ~0.1-1 MHz). Below the Morin transition a pattern of attenuation which resembles that seen below ferroelastic transitions has been found, even though the ideal low temperature structure cannot contain ferroelastic twins. This loss behavior is tentatively ascribed to the presence of local ferromagnetically ordered defect regions which are coupled locally to shear strains.

SELECTION OF CITATIONS
SEARCH DETAIL