Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 54(2): 349-62, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25489970

ABSTRACT

In halophilic archaea the photophobic response is mediated by the membrane-embedded 2:2 photoreceptor/-transducer complex SRII/HtrII, the latter being homologous to the bacterial chemoreceptors. Both systems bias the rotation direction of the flagellar motor via a two-component system coupled to an extended cytoplasmic signaling domain formed by a four helical antiparallel coiled-coil structure. For signal propagation by the HAMP domains connecting the transmembrane and cytoplasmic domains, it was suggested that a two-state thermodynamic equilibrium found for the first HAMP domain in NpSRII/NpHtrII is shifted upon activation, yet signal propagation along the coiled-coil transducer remains largely elusive, including the activation mechanism of the coupled kinase CheA. We investigated the dynamic and structural properties of the cytoplasmic tip domain of NpHtrII in terms of signal transduction and putative oligomerization using site-directed spin labeling electron paramagnetic resonance spectroscopy. We show that the cytoplasmic tip domain of NpHtrII is engaged in a two-state equilibrium between a dynamic and a compact conformation like what was found for the first HAMP domain, thus strengthening the assumption that dynamics are the language of signal transfer. Interspin distance measurements in membranes and on isolated 2:2 photoreceptor/transducer complexes in nanolipoprotein particles provide evidence that archaeal photoreceptor/-transducer complexes analogous to chemoreceptors form trimers-of-dimers or higher-order assemblies even in the absence of the cytoplasmic components CheA and CheW, underlining conservation of the overall mechanistic principles underlying archaeal phototaxis and bacterial chemotaxis systems. Furthermore, our results revealed a significant influence of the NpHtrII signaling domain on the NpSRII photocycle kinetics, providing evidence for a conformational coupling of SRII and HtrII in these complexes.


Subject(s)
Archaea/chemistry , Archaeal Proteins/chemistry , Carotenoids/chemistry , Archaea/metabolism , Archaeal Proteins/metabolism , Carotenoids/metabolism , Electron Spin Resonance Spectroscopy , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Signal Transduction , Spin Labels , Thermodynamics
2.
J Cell Biol ; 191(4): 845-59, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-21079247

ABSTRACT

Tethering factors are organelle-specific multisubunit protein complexes that identify, along with Rab guanosine triphosphatases, transport vesicles and trigger their SNARE-mediated fusion of specific transport vesicles with the target membranes. Little is known about how tethering factors discriminate between different trafficking pathways, which may converge at the same organelle. In this paper, we describe a phosphorylation-based switch mechanism, which allows the homotypic vacuole fusion protein sorting effector subunit Vps41 to operate in two distinct fusion events, namely endosome-vacuole and AP-3 vesicle-vacuole fusion. Vps41 contains an amphipathic lipid-packing sensor (ALPS) motif, which recognizes highly curved membranes. At endosomes, this motif is inserted into the lipid bilayer and masks the binding motif for the δ subunit of the AP-3 complex, Apl5, without affecting the Vps41 function in endosome-vacuole fusion. At the much less curved vacuole, the ALPS motif becomes available for phosphorylation by the resident casein kinase Yck3. As a result, the Apl5-binding site is exposed and allows AP-3 vesicles to bind to Vps41, followed by specific fusion with the vacuolar membrane. This multifunctional tethering factor thus discriminates between trafficking routes by switching from a curvature-sensing to a coat recognition mode upon phosphorylation.


Subject(s)
Cell Membrane/metabolism , Cell Membrane/ultrastructure , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Motifs , Animals , Casein Kinase I/genetics , Casein Kinase I/metabolism , Cell Membrane/chemistry , Endosomes/metabolism , Molecular Sequence Data , Phosphorylation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...