Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Infant Behav Dev ; 75: 101947, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593528

ABSTRACT

The early emergence of social smiles is an important milestone of infants' socio-emotional development. Our aim was to assess how the use of protective facemasks by adults affects the display of social smiles in preterm (PT) and full-term (FT) infants at 3 months (corrected age for prematurity). We enrolled 30 FT and 30 PT infants (gestational age ≤ 32 weeks). Infants' social smiles displays were assessed at 2-3-month-age (corrected) across a three-episode (masked mother; unmasked mother; masked adult female stranger) videotaped interactive task. During each episode, the adult was instructed to maintain specific facial expressions (happy-smiling, sad-frowning, neutral-unresponsive) for 15 second windows and then instructed to interact spontaneously for 45 s (of which the first 15 s were coded). FT and PT infants did not differ in the display of social smiles. In both groups, social smiles were mostly exhibited in response to happy/smiling and spontaneously interacting partners. Overall, no effect of wearing a protective facemask emerged. The use of protective facemasks did not result in a lower display of social smiles. The findings suggest that FT and PT might be equally sensitive to their adult interactive partners in terms of social smiles displays at 2-3-month-age.

2.
Pediatr Neurol ; 155: 104-113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631078

ABSTRACT

BACKGROUND: The prognostic relevance of fetal/early postnatal magnetic resonance (MR) imaging (MRI) isolated "minor" lesions in congenital cytomegalovirus (CMV) infection is still unclear, because of the heterogeneity of previously reported case series. The aim of this study was to report the imaging and long-term clinical follow-up data on a relatively large cohort of infected fetuses. METHODS: Among 140 CMV-infected fetuses from a single-center 12-year-long fetal MRI database, cases that showed isolated "minor" lesions at MRI, mainly represented by polar temporal lesions, were selected. MRI features were described, and clinical follow-up information was collected through consultation of medical records and telephone interview to establish the auditory and neurological outcome of each patient. RESULTS: Thirty-six cases were included in the study. The frequency of "minor" lesions increased progressively with ongoing gestational age in cases who underwent serial MR examination; 31% of cases were symptomatic at birth for unilateral altered auditory brainstem response. At long-term clinical follow-up, performed in 35 patients at a mean age of 64.5 months (range: 25 to 138), 43% of patients were asymptomatic and 57% presented with mild/moderate disability including hearing loss (34%), unilateral in all cases but one (therefore classified as severe), and/or minor cognitive and behavioral disorders (49%). CONCLUSIONS: Descriptive analysis of the type and modality of occurrence of "minor" lesions suggests performing serial fetal/postnatal MR examinations not to miss later-onset lesions. Follow-up data from the present cohort, combined with maternal/fetal factors and serologic-laboratory parameters may contribute to improve prenatal and neonatal period counselling skills.


Subject(s)
Cytomegalovirus Infections , Magnetic Resonance Imaging , Humans , Cytomegalovirus Infections/diagnostic imaging , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/complications , Female , Pregnancy , Male , Infant , Child, Preschool , Follow-Up Studies , Infant, Newborn , Child , Brain/diagnostic imaging , Prenatal Diagnosis
3.
Neuropediatrics ; 55(2): 129-134, 2024 04.
Article in English | MEDLINE | ID: mdl-38365198

ABSTRACT

PGAP2 gene has been known to be the cause of "hyperphosphatasia, mental retardation syndrome-3" (HPMRS3). To date, 14 pathogenic variants in PGAP2 have been identified as the cause of this syndrome in 24 patients described in single-case reports or small clinical series with pan-ethnic distribution. We aim to present a pediatric PGAP2-mutated case, intending to further expand the clinical phenotype of the syndrome and to report our experience on a therapeutic approach to drug-resistant epilepsy.We present the clinical, neuroradiological, and genetic characterization of a Caucasian pediatric subject with biallelic pathogenic variants in the PGAP2 gene revealed by next generation sequencing analysis.We identified a subject who presented with global developmental delay and visual impairment. Brain magnetic resonance imaging showed mild hypoplasia of the inferior cerebellar vermis and corpus callosum and mild white matter reduction. Laboratory investigations detected an increase in alkaline phosphatase. At the age of 13 months, he began to present epileptic focal seizures with impaired awareness, which did not respond to various antiseizure medications. Electroencephalogram (EEG) showed progressive background activity disorganization and multifocal epileptic abnormalities. Treatment with high-dose pyridoxine showed partial benefit, but the persistence of seizures and the lack of EEG amelioration prompted us to introduce ketogenic diet treatment.Our case provides a further phenotypical expansion of HPMRS3 to include developmental and epileptic encephalopathy. Due to the limited number of patients reported so far, the full delineation of the clinical spectrum of HPMRS3 and indications for precision medicine would benefit from the description of new cases and their follow-up evaluations.


Subject(s)
Abnormalities, Multiple , Epilepsy , Intellectual Disability , Humans , Infant , Male , Abnormalities, Multiple/pathology , Brain/pathology , Epilepsy/diagnostic imaging , Epilepsy/drug therapy , Epilepsy/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Phenotype , Seizures , Syndrome
4.
J Clin Immunol ; 44(2): 60, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324161

ABSTRACT

TLR7 recognizes pathogen-derived single-stranded RNA (ssRNA), a function integral to the innate immune response to viral infection. Notably, TLR7 can also recognize self-derived ssRNA, with gain-of-function mutations in human TLR7 recently identified to cause both early-onset systemic lupus erythematosus (SLE) and neuromyelitis optica. Here, we describe two novel mutations in TLR7, F507S and L528I. While the L528I substitution arose de novo, the F507S mutation was present in three individuals from the same family, including a severely affected male, notably given that the TLR7 gene is situated on the X chromosome and that all other cases so far described have been female. The observation of mutations at residues 507 and 528 of TLR7 indicates the importance of the TLR7 dimerization interface in maintaining immune homeostasis, where we predict that altered homo-dimerization enhances TLR7 signaling. Finally, while mutations in TLR7 can result in SLE-like disease, our data suggest a broader phenotypic spectrum associated with TLR7 gain-of-function, including significant neurological involvement.


Subject(s)
Gain of Function Mutation , Lupus Erythematosus, Systemic , Female , Male , Humans , Toll-Like Receptor 7 , Mutation , Dimerization , RNA
6.
Am J Med Genet A ; 194(1): 82-87, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37750385

ABSTRACT

Brunner syndrome is a recessive X-linked disorder caused by pathogenic variants in the monoamine oxidase A gene (MAOA). It is characterized by distinctive aggressive behavior, mild intellectual disability, sleep disturbances, and typical biochemical alterations deriving from the impaired monoamine metabolism. We herein describe a 5-year-old boy with developmental delay, autistic features, and myoclonic epilepsy, and his mother, who had mild intellectual disability and recurrent episodes of palpitations, headache, abdominal pain, and abdominal bloating. Whole exome sequencing allowed detection of the maternally-inherited variant c.410A>G, (p.Glu137Gly) in the MAOA gene. The subsequent biochemical studies confirmed the MAOA deficiency both in the child and his mother. Given the serotonergic symptoms associated with high serotonin levels found in the mother, treatment with a serotonin reuptake inhibitor and dietary modifications were carried out, resulting in regression of the biochemical abnormalities and partial reduction of symptoms. Our report expands the phenotypic spectrum of Brunner disease, bringing new perspectives on the behavioral and neurodevelopmental phenotype from childhood to adulthood.


Subject(s)
Intellectual Disability , Male , Female , Humans , Child , Adolescent , Young Adult , Child, Preschool , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Mothers , Monoamine Oxidase/chemistry , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Phenotype
7.
J Pineal Res ; 76(1): e12932, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38111174

ABSTRACT

Preterm infants cannot counteract excessive reactive oxygen species (ROS) production due to preterm birth, leading to an excess of lipid peroxidation with malondialdehyde (MDA) production, capable of contributing to brain damage. Melatonin (ME), an endogenous brain hormone, and its metabolites, act as a free radical scavenger against ROS. Unfortunately, preterms have an impaired antioxidant system, resulting in the inability to produce and release ME. This prospective, multicenter, parallel groups, randomized, double-blind, placebo-controlled trial aimed to assess: (i) the endogenous production of ME in very preterm infants (gestational age ≤ 29 + 6 WE, 28 infants in the ME and 26 in the placebo group); (ii) the exogenous hormone availability and its metabolization to the main metabolite, 6-OH-ME after 15 days of ME oral treatment; (iii) difference of MDA plasma concentration, as peroxidation marker, after treatment. Blood was collected before the first administration (T1) and after 15 days of administration (T2). ME and 6-OH-ME were detected by liquid chromatography tandem mass spectrometry, MDA was measured by liquid chromatograph with fluorescence detection. ME and 6-OH-ME were not detectable in the placebo group at any study time-point. ME was absent in the active group at T1. In contrast, after oral administration, ME and 6-OH-ME resulted highly detectable and the difference between concentrations T2 versus T1 was statistically significant, as well as the difference between treated and placebo groups at T2. MDA levels seemed stable during the 15 days of treatment in both groups. Nevertheless, a trend in the percentage of neonates with reduced MDA concentration at T2/T1 was 48.1% in the ME group versus 38.5% in the placebo group. We demonstrated that very preterm infants are not able to produce endogenous detectable plasma levels of ME during their first days of life. Still, following ME oral administration, appreciable amounts of ME and 6-OH-ME were available. The trend of MDA reduction in the active group requires further clinical trials to fix the dosage, the length of ME therapy and to identify more appropriate indexes to demonstrate, at biological and clinical levels, the antioxidant activity and consequent neuroprotectant potential of ME in very preterm newborns.


Subject(s)
Melatonin , Premature Birth , Female , Infant, Newborn , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Melatonin/therapeutic use , Infant, Premature , Reactive Oxygen Species , Neuroprotection , Prospective Studies
8.
Genes (Basel) ; 14(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761957

ABSTRACT

Leukoencephalopathy with calcifications and cysts (LCC) is a rare autosomal recessive disorder showing a pediatric or adult onset. First described in 1996 by Labrune and colleagues, it was only in 2016 that bi-allelic variants in a non-protein coding gene, SNORD118, were found as the cause for LCC, differentiating this syndrome from coats plus (CP). SNORD118 transcribes for a small nucleolar RNA, which is necessary for correct ribosome biogenesis, hence the classification of LCC among ribosomopathies. The syndrome is characterized by a combination of white matter hyperintensities, calcifications, and cysts on brain MRI with varying neurological signs. Corticosteroids, surgery, and recently bevacizumab, have been tried with unclear results since the natural history of the disease remains elusive. To date, 67 patients with a pediatric onset of disease have been described in the literature, with a clinical-radiological follow-up carried out in only eleven of them. We described the clinical-radiological follow-up from birth to almost five years of age of a late-preterm patient diagnosed with LCC and carried out a thorough overview of pediatric patients described in the literature. It is important to gather serial clinical-radiological data from other patients to depict the natural history of this disease, aiming to deeply depict genotype-phenotype correlations and make the role of new therapeutics clearer.

9.
Clin Case Rep ; 11(8): e7724, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37534202

ABSTRACT

Key Clinical Message: Baricitinib, a Janus kinase inhibitor (JAK-inhibitor), seems to contribute to an improvement of a child affected by Aicardi-Goutières syndrome (AGS), reducing the interferon score and determining a recovery of cognitive, communicative, and relational dysfunctions, while the gross motor deficit persisted. Abstract: We report the treatment response to baricitinib, a JAK-inhibitor, in a 4-year-old girl affected by Aicardi-Goutières syndrome (AGS2, RNASEH2B mutation). Using quantitative measures, we detected a significant amelioration characterized by a complete recovery of cognitive, communicative, and relational skills after 8 and 16 months from the beginning of therapy.

10.
Front Endocrinol (Lausanne) ; 14: 1152237, 2023.
Article in English | MEDLINE | ID: mdl-36998476

ABSTRACT

Introduction: Aicardi-Goutières Syndrome (AGS) is a rare encephalopathy with early onset that can be transmitted in both dominant and recessive forms. Its phenotypic covers a wide range of neurological and extraneurological symptoms. Nine genes that are all involved in nucleic acids (NAs) metabolism or signaling have so far been linked to the AGS phenotype. Recently, a link between autoimmune or neurodegenerative conditions and mitochondrial dysfunctions has been found. As part of the intricate system of epigenetic control, the mtDNA goes through various alterations. The displacement (D-loop) region represents one of the most methylated sites in the mtDNA. The term "mitoepigenetics" has been introduced as a result of increasing data suggesting that epigenetic processes may play a critical role in the control of mtDNA transcription and replication. Since we showed that RNASEH2B and RNASEH2A-mutated Lymphoblastoid Cell Lines (LCLs) derived from AGS patients had mitochondrial alterations, highlighting changes in the mtDNA content, the main objective of this study was to examine any potential methylation changes in the D-loop regulatory region of mitochondria and their relationship to the mtDNA copy number in peripheral blood cells of AGS patients with mutations in various AGS genes and healthy controls. Materials and methods: We collected blood samples from 25 AGS patients and we performed RT-qPCR to assess the mtDNA copy number and pyrosequencing to measure DNA methylation levels in the D-loop region. Results: Comparing AGS patients to healthy controls, D-loop methylation levels and mtDNA copy number increased significantly. We also observed that in AGS patients, the mtDNA copy number increased with age at sampling, but not the D-loop methylation levels, and there was no relationship between sex and mtDNA copy number. In addition, the D-loop methylation levels and mtDNA copy number in the AGS group showed a non-statistically significant positive relation. Conclusion: These findings, which contradict the evidence for an inverse relationship between D-loop methylation levels and mtDNA copy number, show that AGS patients have higher D-loop methylation levels than healthy control subjects. Additional research is needed to identify the function of these features in the etiology and course of AGS.


Subject(s)
DNA Copy Number Variations , DNA, Mitochondrial , DNA, Mitochondrial/genetics , Mitochondria/genetics , DNA Methylation
11.
Clin Immunol ; 249: 109299, 2023 04.
Article in English | MEDLINE | ID: mdl-36963449

ABSTRACT

Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , DNA Methylation , Gene Expression , Severity of Illness Index , Nervous System Malformations/genetics , Autoimmune Diseases of the Nervous System/genetics , Interferons/genetics , Mutation , Biomarkers , Case-Control Studies
12.
Dev Psychopathol ; 35(1): 35-43, 2023 02.
Article in English | MEDLINE | ID: mdl-34210369

ABSTRACT

The COVID-19 pandemic is a global traumatic experience for citizens, especially during sensitive time windows of heightened plasticity such as pregnancy and neonatal life. Pandemic-related stress experienced by mothers during pregnancy may act as an early risk factor for infants' regulatory capacity development by altering maternal psychosocial well-being (e.g., increased anxiety, reduced social support) and caregiving environment (e.g., greater parenting stress, impaired mother-infant bonding). The aim of the present longitudinal study was to assess the consequences of pandemic-related prenatal stress on infants' regulatory capacity. A sample of 163 mother-infant dyads was enrolled at eight maternity units in northern Italy. They provided complete data about prenatal stress, perceived social support, postnatal anxiety symptoms, parenting stress, mother-infant bonding, and infants' regulatory capacity at 3 months of age. Women who experienced emotional stress and received partial social support during pregnancy reported higher anxious symptoms. Moreover, maternal postnatal anxiety was indirectly linked to the infants' regulatory capacity at 3 months, mediated by parenting stress and mother-infant bonding. Dedicated preventive interventions should be delivered to mothers and should be focused on protecting the mother-infant dyad from the detrimental effects of pandemic-related stress during the COVID-19 healthcare emergency.


Subject(s)
COVID-19 , Mother-Child Relations , Infant, Newborn , Female , Infant , Humans , Pregnancy , Longitudinal Studies , Mother-Child Relations/psychology , Pandemics , COVID-19/epidemiology , Mothers/psychology
13.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430958

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients' LCLs suggesting a pivotal role in AGS pathogenesis.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Humans , Reactive Oxygen Species/metabolism , Nervous System Malformations/genetics , Autoimmune Diseases of the Nervous System/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism
14.
Eur J Med Genet ; 65(12): 104639, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36206969

ABSTRACT

Variants in SCN2A, encoding the voltage-gated sodium channel Nav1.2, are commonly associated with developmental and epileptic encephalopathy. Although animal studies demonstrated a role for Nav1.2 in intraventricular conduction, heart anomalies have been only occasionally described in patients with SCN2A variants. In this report we trace the prenatal and neonatal history of a fetus/newborn with a de novo pathogenic variant in the SCN2A gene identified by prenatal trio whole-exome sequencing (WES). In addition to more typically SCN2A-associated neurological manifestations, the patient showed sustained tachyarrhythmia, potentially expanding the phenotypic spectrum associated with SCN2A variants and raising the question of whether cardiological assessment and prompt pharmacological intervention in SCN2A channelopathies to avoid heart complications might be beneficial. To the best of our knowledge, this represents the first clinical description of a SCN2A phenotype in a prenatal setting, as well as the first SCN2A diagnosis achieved by prenatal trio-WES approach.


Subject(s)
Arrhythmias, Cardiac , NAV1.2 Voltage-Gated Sodium Channel , Humans , NAV1.2 Voltage-Gated Sodium Channel/genetics , Phenotype , Arrhythmias, Cardiac/genetics , Mutation
15.
Front Endocrinol (Lausanne) ; 13: 936171, 2022.
Article in English | MEDLINE | ID: mdl-36060976

ABSTRACT

The placenta plays a fundamental role during pregnancy for fetal growth and development. A suboptimal placental function may result in severe consequences during the infant's first years of life. In recent years, a new field known as neuroplacentology has emerged and it focuses on the role of the placenta in fetal and neonatal brain development. Because of the limited data, our aim was to provide a narrative review of the most recent knowledge about the relation between placental lesions and fetal and newborn neurological development. Papers published online from 2000 until February 2022 were taken into consideration and particular attention was given to articles in which placental lesions were related to neonatal morbidity and short-term and long-term neurological outcome. Most research regarding the role of placental lesions in neurodevelopment has been conducted on fetal growth restriction and preterm infants. Principal neurological outcomes investigated were periventricular leukomalacia, intraventricular hemorrhages, neonatal encephalopathy and autism spectrum disorder. No consequences in motor development were found. All the considered studies agree about the crucial role played by placenta in fetal and neonatal neurological development and outcome. However, the causal mechanisms remain largely unknown. Knowledge on the pathophysiological mechanisms and on placenta-related risks for neurological problems may provide clues for early interventions aiming to improve neurological outcomes, especially among pediatricians and child psychiatrists.


Subject(s)
Autism Spectrum Disorder , Placenta Diseases , Autism Spectrum Disorder/pathology , Female , Fetal Growth Retardation/pathology , Humans , Infant , Infant, Newborn , Infant, Premature , Placenta/pathology , Placenta Diseases/pathology , Pregnancy
16.
Front Psychiatry ; 13: 950455, 2022.
Article in English | MEDLINE | ID: mdl-35911240

ABSTRACT

Background: The COVID-19 pandemic is a collective trauma that may expose susceptible individuals to high levels of stress. Pregnant women represent a high-risk population, considering that pregnancy is a period of heightened neuroplasticity and susceptibility to stress through epigenetic mechanisms. Previous studies showed that the methylation status of the BDNF gene is linked with prenatal stress exposure. The goals of this study were (a) to assess the association between pandemic-related stress and postnatal anxiety and (b) to investigate the potential role of maternal BDNF methylation as a significant mediator of this association. Methods: In the present study, we report data on the association among pandemic-related stress during pregnancy, maternal BDNF methylation, and postnatal anxiety symptoms. Pandemic-related stress and postnatal anxiety were assessed through self-report instruments. BDNF methylation was estimated in 11 CpG sites in DNA from mothers' buccal cells. Complete data were available from 108 mothers. Results: Results showed that pandemic-related stress was associated with an increased risk of postnatal anxiety, r = 0.20, p < 0.05. CpG-specific BDNF methylation was significantly associated with both prenatal pandemic-related stress, r = 0.21, p < 0.05, and postnatal maternal anxious symptoms, r = 0.25, p = 0.01. Moreover, a complete mediation by the BDNF CpG6 methylation emerged between pandemic-related stress during pregnancy and postnatal maternal anxiety, ACME = 0.66, p < 0.05. Conclusion: These findings suggest that BDNF epigenetic regulation by pandemic-related stress might contribute to increase the risk of anxiety in mothers. Policymakers should prioritize the promotion of health and wellbeing in pregnant women and mothers during the present healthcare emergency.

17.
Clin Neurophysiol ; 142: 112-124, 2022 10.
Article in English | MEDLINE | ID: mdl-36030575

ABSTRACT

OBJECTIVE: Descriptions of electroencephalographic (EEG) patterns in Aicardi syndrome (AIC) have to date referred to small cohorts of up to six cases and indicated severe derangement of electrical activity in all cases. The present study was conducted to describe the long-term EEG evolution in a larger AIC cohort, followed for up to 23 years, and identify possible early predictors of the clinical and EEG outcomes. METHODS: In a retrospective study, two experienced clinical neurophysiologists systematically reviewed all EEG traces recorded in 12 AIC cases throughout their follow-up, from epilepsy onset to the present. Clinical outcome was assessed with standardized clinical outcome scales. RESULTS: Analysis of the data revealed two distinct AIC phenotypes. In addition to the "classical severe phenotype" already described in the literature, we identified a new "mild phenotype". The two phenotypes show completely different EEG features at onset of epilepsy and during its evolution, which correspond to different clinical outcomes. CONCLUSIONS: Data from our long-term EEG and clinical-neuroradiological study allowed us to describe two different phenotypes of AIC, with different imaging severity and, in particular, different EEG at onset, which tend to remain constant over time. SIGNIFICANCE: Together, these findings might help to predict long-term clinical outcomes.


Subject(s)
Aicardi Syndrome , Epilepsy , Aicardi Syndrome/diagnostic imaging , Electroencephalography , Epilepsy/genetics , Humans , Magnetic Resonance Imaging , Retrospective Studies
18.
Ital J Pediatr ; 48(1): 117, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854369

ABSTRACT

BACKGROUND: Preterm extremely low birth weight infants (ELBWi) are known to be at greater risk of developing neuropsychiatric diseases. Identifying early predictors of outcome is essential to refer patients for early intervention. Few studies have investigated neurodevelopmental outcomes in Italian ELBWi. This study aims to describe neurodevelopmental outcome at 24 months of corrected age in an eleven-year single-center cohort of Italian ELBWi and to identify early risk factors for adverse neurodevelopmental outcomes. METHODS: All infants born with birth weight < 1000 g and admitted to the Neonatal Intensive Care Unit of the "Fondazione IRCCS Policlinico San Matteo" hospital in Pavia, Italy, from Jan 1, 2005 to Dec 31, 2015 were eligible for inclusion. At 24 months, Griffiths' Mental Developmental Scales Extended Revised (GMDS-ER) were administered. Neurodevelopmental outcome was classified as: normal, minor sequelae (minor neurological signs, General Quotient between 76 and 87), major sequelae (cerebral palsy; General Quotient ≤ 75; severe sensory impairment). Univariate and multivariate multinomial logistic regression models were performed to analyze the correlation between neonatal variables and neurodevelopmental outcome. RESULTS: 176 ELBWi were enrolled (mean gestational age 26.52 weeks sd2.23; mean birthweight 777.45 g sd142.89). 67% showed a normal outcome at 24 months, 17% minor sequelae and 16% major sequelae (4.6% cerebral palsy on overall sample). The most frequent major sequela was cognitive impairment (8.52%). In the entire sample the median score on the Hearing-Speech subscale was lower than the median scores recorded on the other subscales and showed a significantly weaker correlation to each of the other subscales of the GMDS-ER. Severely abnormal cUS findings (RRR 10.22 p 0.043) and bronchopulmonary dysplasia (RRR 4.36 p 0.008) were independent risk factors for major sequelae and bronchopulmonary dysplasia for minor sequelae (RRR 3.00 p 0.018) on multivariate multinomial logistic regression. CONCLUSIONS: This study showed an improvement in ELBWI survival rate without neurodevelopmental impairment at 24 months compared to previously reported international cohorts. Cognitive impairment was the most frequent major sequela. Median scores on GMDS-ER showed a peculiar developmental profile characterized by a selective deficit in the language domain. Severely abnormal cUS findings and bronchopulmonary dysplasia were confirmed as independent risk factors for major sequelae.


Subject(s)
Bronchopulmonary Dysplasia , Cerebral Palsy , Birth Weight , Bronchopulmonary Dysplasia/complications , Cerebral Palsy/epidemiology , Humans , Infant , Infant, Extremely Low Birth Weight , Infant, Newborn , Infant, Premature , Language
20.
Article in English | MEDLINE | ID: mdl-35420016

ABSTRACT

BACKGROUND: Social immaturity and impaired social functioning are topical issues in recent research in the field of prematurity. Social-cognitive skills and emotional processing, the neuropsychological correlates underlying social behavior, are key aspects of these issues. METHODS: We examined 48 Italian primary school children who had been born preterm with a very low birthweight (26 males; mean age 9 years; SD 1.2). All had shown a normal neonatal cerebral ultrasound at term age, and showed a normal neurological examination and average IQ at the time of the study. Social skills and executive functions (EFs) and their correlations with a set of neonatal, sociodemographic, cognitive and adaptive parameters were investigated using standardized scales and questionnaires. RESULTS: Emotion recognition (ER) was impaired in 48% and Theory of Mind (ToM) in 8% of the children. These deficits showed no relationship with EFs or IQ, or with gestational age, birthweight, age or gender. Correlations between ER and socioeconomic status and between ToM and adaptive functioning were documented. CONCLUSIONS: We suggest that adaptive and behavioral problems in preterm children may be linked to neurocognitive dysfunction characterized by deficits in social skills, which may be driven by socioeconomic, family and environmental factors, socioeconomic status in particular. Possible neural circuitry impairments underlying these deficits are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...