Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 20263, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31889102

ABSTRACT

The disease scald of barley is caused by the pathogen Rhynchosporium commune and can cause up to 30-40% yield loss in susceptible cultivars. In this study, the Australian barley cultivar 'Yerong' was demonstrated to have resistance that differed from Turk (Rrs1 (Rh3 type)) based on seedling tests with 11 R. commune isolates. A doubled haploid population with 177 lines derived from a cross between 'Yerong' and the susceptible Australian cultivar 'Franklin' was used to identify quantitative trait loci (QTL) for scald resistance. A QTL on chromosome 3H was identified with large effect, consistent with a major gene conferring scald resistance at the seedling stage. Under field conditions, a bivariate analysis was used to model scald percentage of infected leaf area and relative maturity, the residuals from the regression were used as our phenotype for QTL analysis. This analysis identified one major QTL on chromosome 3H, which mapped to the same position as the QTL at seedling stage. The identified QTL on 3H is proposed to be different from the Rrs1 on the basis of seedling resistance against different R. commune isolates and physical map position. This study increases the current understanding of scald resistance and identifies genetic material possessing QTLs useful for the marker-assisted selection of scald resistance in barley breeding programs.


Subject(s)
Ascomycota , Disease Resistance/genetics , Genes, Plant , Hordeum/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Chromosome Mapping , Hordeum/microbiology
2.
Appl Environ Microbiol ; 85(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30530713

ABSTRACT

Zymoseptoria tritici is a globally distributed fungal pathogen which causes Septoria tritici blotch on wheat. Management of the disease is attempted through the deployment of resistant wheat cultivars and the application of fungicides. However, fungicide resistance is commonly observed in Z. tritici populations, and continuous monitoring is required to detect breakdowns in fungicide efficacy. We recently reported azole-resistant isolates in Australia; however, it remained unknown whether resistance was brought into the continent through gene flow or whether resistance emerged independently. To address this question, we screened 43 isolates across five Australian locations for azole sensitivity and performed whole-genome sequencing on 58 isolates from seven locations to determine the genetic basis of resistance. Population genomic analyses showed extremely strong differentiation between the Australian population recovered after azoles began to be used and both Australian populations recovered before azoles began to be used and populations on different continents. The apparent absence of recent gene flow between Australia and other continents suggests that azole fungicide resistance has evolved de novo and subsequently spread within Tasmania. Despite the isolates being distinct at the whole-genome level, we observed combinations of nonsynonymous substitutions at the CYP51 locus identical to those observed elsewhere in the world. We observed nine previously reported nonsynonymous mutations as well as isolates that carried a combination of the previously reported L50S, S188N, A379G, I381V, Y459DEL, G460DEL, and N513K substitutions. Assays for the 50% effective concentration against a subset of isolates exposed to the tebuconazole and epoxiconazole fungicides showed high levels of azole resistance. The rapid, parallel evolution of a complex CYP51 haplotype that matches a dominant European haplotype demonstrates the enormous potential for de novo resistance emergence in pathogenic fungi.IMPORTANCE Fungicides are essential to control diseases in agriculture because many crops are highly susceptible to pathogens. However, many pathogens rapidly evolve resistance to fungicides. A large body of studies have described specific mutations conferring resistance and have often made inferences about the origins of resistance based on sequencing data from the target gene alone. Here, we show the de novo acquisition of resistance to the ubiquitously used azole fungicides in genetically isolated populations of the wheat pathogen Zymoseptoria tritici in Tasmania, Australia. We confirm evidence for parallel evolution through genome-scale analyses of representative worldwide populations. The emergence of complex resistance haplotypes following a well-documented recent introduction of azoles into Australian farming practices demonstrates how rapidly chemical resistance evolves in agricultural ecosystems.


Subject(s)
Ascomycota/genetics , Azoles/pharmacology , Cytochrome P450 Family 51/genetics , Drug Resistance, Fungal/drug effects , Fungicides, Industrial/pharmacology , Triticum/microbiology , Ascomycota/drug effects , Australia , Crops, Agricultural , Drug Resistance, Fungal/genetics , Epoxy Compounds/pharmacology , Fungal Proteins/genetics , Genetics, Population , Mutation , Plant Diseases/microbiology , Sequence Analysis , Strobilurins/pharmacology , Triazoles/pharmacology , Whole Genome Sequencing
3.
Physiol Plant ; 161(4): 434-450, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28692131

ABSTRACT

Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo-inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.


Subject(s)
Fruit/metabolism , Plant Roots/metabolism , Vitis/metabolism , Amino Acids/metabolism , Carbohydrate Metabolism/genetics , Carbohydrate Metabolism/physiology , Fruit/physiology , Gas Chromatography-Mass Spectrometry , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/physiology , Vitis/physiology
4.
Front Plant Sci ; 8: 1952, 2017.
Article in English | MEDLINE | ID: mdl-29312361

ABSTRACT

Soil acidity poses a major threat to productivity of several crops; mainly due to the prevalence of toxic levels of Al3+ and Mn2+. Crop productivity could be harnessed on acid soils via the development of plant varieties tolerant to phytotoxic levels of these cations. In this study, we investigated the extent of natural variation for Mn2+ tolerance among ten parental lines of the Australian and International canola mapping populations. Response to Mn2+ toxicity was measured on the bases of cotyledon chlorosis, shoot biomass, and leaf area in nutrient solution under control (9 µM of MnCl2⋅4H2O) and Mn treatment (125 µM of MnCl2⋅4H2O). Among parental lines, we selected Darmor-bzh and Yudal that showed significant and contrasting variation in Mn2+ tolerance to understand genetic control and identify the quantitative trait loci (QTL) underlying Mn2+ tolerance. We evaluated parental lines and their doubled haploid (DH) progenies (196 lines) derived from an F1 cross, Darmor-bzh/Yudal for Mn2+ tolerance. Mn2+-tolerant genotypes had significantly higher shoot biomass and leaf area compared to Mn2+-sensitive genotypes. A genetic linkage map based on 7,805 DArTseq markers corresponding to 2,094 unique loci was constructed and further utilized for QTL identification. A major locus, BnMn2+.A09 was further mapped with a SNP marker, Bn-A09-p29012402 (LOD score of 34.6) accounting for most of the variation in Mn2+ tolerance on chromosome A09. This is the first report on the genomic localization of a Mn2+ tolerance locus in B. napus. Additionally, an ortholog of A. thaliana encoding for cation efflux facilitator transporter was located within 3,991 bp from significant SNP marker associated with BnMn2+.A09. A suite of genome sequence based markers (DArTseq and Illumina Infinium SNPs) flanking the BnMn2+.A09 locus would provide an invaluable tool for various molecular breeding applications to improve canola production and profitability on Mn2+ toxic soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...