Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Acta Biomater ; 128: 120-129, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33930575

ABSTRACT

Osteochondral defects present a unique clinical challenge due to their combination of phenotypically distinct cartilage and bone, which require specific, stratified biochemical cues for tissue regeneration. Furthermore, the articular cartilage exhibits significantly worse regeneration than bone due to its largely acellular and avascular nature, prompting significant demand for regenerative therapies. To address these clinical challenges, we have developed a bilayered, modular hydrogel system that enables the click functionalization of cartilage- and bone-specific biochemical cues to each layer. In this system, the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) was click conjugated with either a cartilage- or bone-specific peptide sequence of interest, and then mixed with a suspension of thermoresponsive polymer and mesenchymal stem cells (MSCs) to generate tissue-specific, cell-encapsulated hydrogel layers targeting the cartilage or bone. We implanted bilayered hydrogels in rabbit femoral condyle defects and investigated the effects of tissue-specific peptide presentation and cell encapsulation on osteochondral tissue repair. After 12 weeks implantation, hydrogels with a chondrogenic peptide sequence produced higher histological measures of overall defect filling, cartilage surface regularity, glycosaminoglycan (GAG)/cell content of neocartilage and adjacent cartilage, and bone filling and bonding compared to non-chondrogenic hydrogels. Furthermore, MSC encapsulation promoted greater histological measures of overall defect filling, cartilage thickness, GAG/cell content of neocartilage, and bone filling. Our results establish the utility of this click functionalized hydrogel system for in vivo repair of the osteochondral unit. STATEMENT OF SIGNIFICANCE: Osteochondral repair requires mimicry of both cartilage- and bone-specific biochemical cues, which are highly distinct. While traditional constructs for osteochondral repair have mimicked gross compositional differences between the cartilage and bone in mineral content, mechanical properties, proteins, or cell types, few constructs have recapitulated the specific biochemical cues responsible for the differential development of cartilage and bone. In this study, click biofunctionalized, bilayered hydrogels produced stratified presentation of developmentally inspired peptide sequences for chondrogenesis and osteogenesis. This work represents, to the authors' knowledge, the first application of bioconjugation chemistry for the simultaneous repair of bone and cartilage tissue. The conjugation of tissue-specific peptide sequences successfully promoted development of both cartilage and bone tissues in vivo.


Subject(s)
Cartilage, Articular , Hydrogels , Animals , Chondrogenesis , Peptides , Rabbits , Tissue Engineering
3.
Tissue Eng Part C Methods ; 26(11): 554-564, 2020 11.
Article in English | MEDLINE | ID: mdl-33050806

ABSTRACT

Osteochondral tissue repair represents a common clinical need, with multiple approaches in tissue engineering and regenerative medicine being investigated for the repair of defects of articular cartilage and subchondral bone. A full thickness rabbit femoral condyle defect is a clinically relevant model of an articulating and load bearing joint surface for the investigation of osteochondral tissue repair by various cell-, biomolecule-, and biomaterial-based implants. In this protocol, we describe the methodology and 1.5- to 2-h surgical procedure for the generation of a reproducible, full thickness defect for construct implantation in the rabbit medial femoral condyle. Furthermore, we describe a step-by-step procedure for osteochondral tissue collection and the assessment of tissue formation using standardized histological, radiological, mechanical, and biochemical analytical techniques. This protocol illustrates the critical steps for reproducibility and minimally invasive surgery as well as applications to evaluate the efficacy of cartilage and bone tissue engineering implants, with emphasis on the usage of histological and radiological measures of tissue growth. Impact statement Although multiple surgical techniques have been developed for the treatment of osteochondral defects, repairing the tissues to their original state remains an unmet need. Such limitations have thus prompted the development of various constructs for osteochondral tissue regeneration. An in vivo model that is both clinically relevant and economically practical is necessary to evaluate the efficacy of different tissue engineered constructs. In this article, we present a full thickness rabbit femoral condyle defect model and describe the analytical techniques to assess the regeneration of osteochondral tissue.


Subject(s)
Chondrogenesis , Femur/pathology , Femur/physiopathology , Osteogenesis , Regeneration , Animals , Biomechanical Phenomena , Chondrogenesis/genetics , Disease Models, Animal , Femur/diagnostic imaging , Gene Expression Regulation , Osteogenesis/genetics , Rabbits , Regeneration/genetics , Wound Healing/genetics , X-Ray Microtomography
4.
Clin Surg ; 22017 May.
Article in English | MEDLINE | ID: mdl-29930993

ABSTRACT

Bone is a unique tissue that has the ability to repair itself and return to full function. Bone regeneration is a well synchronized biological process that recapitulates embryonic bone development. The establishment of a functional vascular supply has been shown to be essential for proper ossification of newly deposited bone, and impaired angiogenesis as in advanced age, diabetes, and anti-cancer treatments affect bone repair. Endothelial Guanosine, 3', 5'-Cyclic Monophophate(cGMP) is known to support angiogenesis, and sildenafil, a Phosphodiesterase 5 (PDE5) antagonist, prevents cGMP hydrolysis and thereby, promotes the formation of new blood vessels. Since the development of functional vascular networks is critical to bone repair, we investigated the effects of sildenafil on early alveolar bone regeneration following exodontia. Our results demonstrate that per-oral administration of sildenafil (10 mg/kg/day) in rats delays the dissolution and replacement of the sanguine clot with granulation tissue. As a result, the number of replicating cells, a hallmark of regenerating tissue, observed on day 4 was remarkably lower in sildenafil-treated animals than their control counterparts (mean±SD; control: 47.35±9.21; sildenafil: 11.47±5.14). Similarly, cells expressing transcription factor Cbfa-1/Runx2 and osteopontin, markers of differentiating osteoblasts, were fewer in treated animals (mean±SD; control: 83.18 ± 4.60; sildenafil: 13.77 ± 4.63). Treatment with hydrolysis-resistant cyclic GMP (cGMP) showed findings similar to sildenafil-treated animals suggesting a negative impact of cGMP on early inflammatory phase of bone healing. However, histological differences were not significant between the 2 groups on day 8. Based on these findings, we conclude that sildenafil temporarily retards early events in alveolar bone healing.

5.
Toxicol Appl Pharmacol ; 282(3): 244-51, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25545985

ABSTRACT

Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10g/kg DEG and blood, kidney and liver tissues were collected at 48h. Both rat strains treated with 10g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUN and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10g/kg DEG, but no DGA was present at 2 or 5g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments.


Subject(s)
Acidosis/chemically induced , Chemical and Drug Induced Liver Injury/etiology , Ethylene Glycols/toxicity , Kidney Diseases/chemically induced , Acidosis/metabolism , Acidosis/pathology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Urea Nitrogen , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Creatine/blood , Dose-Response Relationship, Drug , Ethylene Glycols/blood , Ethylene Glycols/pharmacokinetics , Glycogen/metabolism , Glycolates/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats, Inbred F344 , Rats, Wistar
6.
Biol Proced Online ; 15: 8, 2013.
Article in English | MEDLINE | ID: mdl-23855709

ABSTRACT

BACKGROUND: Inflammatory arthritis is a chronic disease, resulting in synovitis and subchondral and bone area destruction, which can severely affect a patient's quality of life. The most common form of inflammatory arthritis is rheumatoid arthritis (RA) in which many of the disease mechanisms are not well understood. The collagen-induced arthritis (CIA) mouse model is similar to RA as it exhibits joint space narrowing and bone erosion as well as involves inflammatory factors and cellular players that have been implicated in RA pathogenesis. Quantitative data for disease progression in RA models is difficult to obtain as serum blood markers may not always reflect disease state and physical disease indexes are subjective. Thus, it is important to develop tools to objectively assess disease progression in CIA. RESULTS: Micro-CT (Computed Tomography) is a relatively mature technology that has been used to track a variety of anatomical changes in small animals. In this study, micro-CT scans of several joints of control and CIA mice were acquired at 0, 4, 7, and 9 weeks after the immunization with collagen type II. Each micro-CT scan was analyzed by applying a segmentation algorithm to individual slices in each image set to provide 3-dimensional representations of specific bones including the humerus, femur, and tibia. From these representations, the volume and mean density of these bones were measured and compared. This analysis showed that both the volume and the density of each measured bone of the CIA mice were significantly smaller than those of the controls at week 7. CONCLUSIONS: This study demonstrates that micro-CT can be used to quantify bone changes in the CIA mouse model as an alternative to disease index assessments. In conclusion, micro-CT could be useful as a non-invasive method to monitor the efficacy of new treatments for RA tested in small animals.

7.
Mol Ther ; 21(7): 1324-34, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23689600

ABSTRACT

Pathological inclusions containing transactive response DNA-binding protein 43 kDa (TDP-43) are common in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). TDP-43 normally localizes predominantly to the nucleus, but during disease progression, it mislocalizes to the cytoplasm. We expressed TDP-43 in rats by an adeno-associated virus (AAV9) gene transfer method that transduces neurons throughout the central nervous system (CNS). To mimic the aberrant cytoplasmic TDP-43 found in disease, we expressed a form of TDP-43 with mutations in the nuclear localization signal sequence (TDP-NLS). The TDP-NLS was detected in both the cytoplasm and the nucleus of transduced neurons. Unlike wild-type TDP-43, expression of TDP-NLS did not induce mortality. However, the TDP-NLS induced disease-relevant motor impairments over 24 weeks. We compared the TDP-NLS to a 25 kDa C-terminal proaggregatory fragment of TDP-43 (TDP-25). The clinical phenotype of forelimb impairment was pronounced with the TDP-25 form, supporting a role of this C-terminal fragment in pathogenesis. The results advance previous rodent models by inducing cytoplasmic expression of TDP-43 in the spinal cord, and the non-lethal phenotype enabled long-term study. Approaching a more relevant disease state in an animal model that more closely mimics underlying mechanisms in human disease could unlock our ability to develop therapeutics.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/metabolism , Forelimb/metabolism , Forelimb/pathology , Animals , Blotting, Western , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , Dependovirus/genetics , Female , Immunohistochemistry , Male , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Spinal Cord/pathology
8.
PLoS One ; 7(6): e39041, 2012.
Article in English | MEDLINE | ID: mdl-22723923

ABSTRACT

Parkinson's disease (PD) is characterized by the loss of dopamine-producing neurons in the nigrostriatal system. Numerous researchers in the past have attempted to track the progression of dopaminergic depletion in PD. We applied a quantitative non-invasive PET imaging technique to follow this degeneration process in an MPTP-induced mouse model of PD. The VMAT2 ligand (18)F-DTBZ (AV-133) was used as a radioactive tracer in our imaging experiments to monitor the changes of the dopaminergic system. Intraperitoneal administrations of MPTP (a neurotoxin) were delivered to mice at regular intervals to induce lesions consistent with PD. Our results indicate a significant decline in the levels of striatal dopamine and its metabolites (DOPAC and HVA) following MPTP treatment as determined by HPLC method. Images obtained by positron emission tomography revealed uptake of (18)F-DTBZ analog in the mouse striatum. However, reduction in radioligand binding was evident in the striatum of MPTP lesioned animals as compared with the control group. Immunohistochemical analysis further confirmed PET imaging results and indicated the progressive loss of dopaminergic neurons in treated animals compared with the control counterparts. In conclusion, our findings suggest that MPTP induced PD in mouse model is appropriate to follow the degeneration of dopaminergic system and that (18)F-DTBZ analog is a potentially sensitive radiotracer that can used to diagnose changes associated with PD by PET imaging modality.


Subject(s)
MPTP Poisoning/diagnosis , Positron-Emission Tomography , Tetrabenazine/analogs & derivatives , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Fluorine Radioisotopes , Male , Mice , Mice, Inbred C57BL , Norepinephrine/metabolism
9.
J Control Release ; 159(1): 27-33, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22269665

ABSTRACT

Late-term thrombosis associated with drug-eluting stents may be due to the non-selective actions of antimitogenic drugs on endothelial cells, leading to delayed vascular healing after stenting angioplasty. Currently, there is a need for stent-based therapies that can both attenuate neointimal hyperplasia and promote re-endothelialization. The aim of this study was to compare the effects of a resveratrol (R)- and quercetin (Q)-eluting stent with that of a bare metal stent (BMS) on neointimal hyperplasia and re-endothelialization in a rat model of arterial angioplasty and stenting. Miniature stents (2.5×1.25mm) were sprayed with nanocomposite coatings containing two concentrations of R:Q (50:25µg/cm(2) (RQ1) or 150:75µg/cm(2) (RQ2)). The stents were deployed into the common carotid artery of rats and their impact on vascular remodeling was compared to that of BMS. Luminal stenosis in arteries stented with RQ2-eluting stents was reduced by 64.6% (p<0.05) compared to arteries stented with BMS. Accompanying this effect was a 59.8% reduction in macrophage infiltration (p<0.05). There were no differences found between RQ1 and BMS. Finally, the RQ2-coated stent accelerated re-endothelialization by 50% compared with BMS (p<0.05). Thus, compared with BMS, local delivery of R and Q from a stent platform significantly reduced in-stent stenosis, while promoting re-endothelialization. These data suggest that R and Q may be favorable candidates for novel stent coatings, potentially reducing the risk of late thrombosis associated with drug-eluting stents.


Subject(s)
Antimitotic Agents/administration & dosage , Drug-Eluting Stents , Endothelium, Vascular/drug effects , Quercetin/administration & dosage , Stilbenes/administration & dosage , Angioplasty , Animals , Cell Proliferation/drug effects , Constriction, Pathologic/drug therapy , Endothelium, Vascular/cytology , Female , Hyperplasia/drug therapy , Hyperplasia/pathology , Male , Nanocomposites , Neointima/drug therapy , Neointima/pathology , Rats , Rats, Sprague-Dawley , Resveratrol
10.
Atherosclerosis ; 219(2): 484-91, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21982412

ABSTRACT

OBJECTIVE: To expedite the investigation of new devices for inhibiting restenosis, we aimed to develop a modified model of arterial angioplasty and stenting in rats that showed greater face validity than the traditional rat model. METHODS: Carotid arteries from Sprague-Dawley rats fed a normal or an atherogenic diet containing a low dose of cholate underwent balloon pre-dilation followed by placement of a bare metal stent. Vessel patency was followed for 28d using ultrasound. Stented vessels were then harvested and were subjected to histologic analysis. Plasma lipid profiles and biomarkers of endothelial dysfunction, inflammation and thrombosis were assessed. RESULTS: There was significant interaction between stenting injury and the atherogenic diet, leading to higher levels of markers for inflammation, platelet activation, and endothelial dysfunction, as well as neointimal hyperplasia, compared with stented rats on normal chow. There was a significant correlation between plasma IL-6 and TXB(2) in stented rats, a relationship which may have contributed to exaggerated vessel remodeling with increased platelet sensitivity. Compared to normal chow, the atherogenic diet also increased fibrin and proteoglycan deposition near stent struts. CONCLUSIONS: Arterial stenting, in combination with the atherogenic diet, led to exacerbated endothelial dysfunction, inflammation, platelet activation, and vascular remodeling compared with stented rats on normal chow. By reproducing key features of clinical restenosis that are lacking in other rat models, this modified rat model may serve as a valuable screening tool to rapidly evaluate new coatings and devices before moving candidates into expensive, more time-consuming rabbit or porcine models.


Subject(s)
Angioplasty, Balloon/instrumentation , Carotid Arteries/pathology , Carotid Artery Injuries/etiology , Carotid Stenosis/etiology , Diet, Atherogenic/adverse effects , Stents , Angioplasty, Balloon/adverse effects , Animals , Arginine/analogs & derivatives , Arginine/blood , Biomarkers/blood , Carotid Arteries/diagnostic imaging , Carotid Arteries/metabolism , Carotid Artery Injuries/blood , Carotid Artery Injuries/diagnostic imaging , Carotid Artery Injuries/pathology , Carotid Stenosis/blood , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/pathology , Choline Deficiency/complications , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Hyperplasia , Inflammation Mediators/blood , Interleukin-6/blood , Lipids/blood , Male , Platelet Activation , Rats , Rats, Sprague-Dawley , Recurrence , Reproducibility of Results , Thromboxane B2/blood , Time Factors , Ultrasonography, Doppler, Color
11.
Cancer Lett ; 312(1): 82-90, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21893382

ABSTRACT

Clearly new breast cancer models are necessary in developing novel therapies. To address this challenge, we examined mammary tumor formation in the Syrian hamster using the chemical carcinogen N-methyl-N-nitrosourea (MNU). A single 50mg/kg intraperitoneal dose of MNU resulted in a 60% incidence of premalignant mammary lesions, and a 20% incidence of mammary adenocarcinomas. Two cell lines, HMAM4A and HMAM4B, were derived from one of the primary mammary tumors induced by MNU. The morphology of the primary tumor was similar to a high-grade poorly differentiated adenocarcinoma in human breast cancer. The primary tumor stained positively for both HER-2/neu and pancytokeratin, and negatively for both cytokeratin 5/6 and p63. When the HMAM4B cell line was implanted subcutaneously into syngeneic female hamsters, tumors grew at a take rate of 50%. A tumor derived from HMAM4B cells implanted into a syngeneic hamster was further propagated in vitro as a stable cell line HMAM5. The HMAM5 cells grew in female syngeneic hamsters with a 70% take rate of tumor formation. These cells proliferate in vitro, form colonies in soft agar, and are aneuploid with a modal chromosomal number of 74 (the normal chromosome number for Syrian hamster is 44). To determine responsiveness to the estrogen receptor (ER), a cell proliferation assay was examined using increasing concentrations of tamoxifen. Both HMAM5 and human MCF-7 (ER positive) cells showed a similar decrease at 24h. However, MDA-MB-231 (ER negative) cells were relatively insensitive to any decrease in proliferation from tamoxifen treatment. These results suggest that the HMAM5 cell line was likely derived from a luminal B subtype of mammary tumor. These results also represent characterization of the first mammary tumor cell line available from the Syrian hamster. The HMAM5 cell line is likely to be useful as an immunocompetent model for human breast cancer in developing novel therapies.


Subject(s)
Adenocarcinoma/pathology , Cell Line, Tumor , Disease Models, Animal , Mammary Neoplasms, Experimental/pathology , Methylnitrosourea , Adenocarcinoma/chemically induced , Animals , Carcinogens , Cricetinae , Female , Mammary Neoplasms, Experimental/chemically induced , Mesocricetus
12.
BMC Cancer ; 10: 540, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20932318

ABSTRACT

BACKGROUND: Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We hypothesized that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis. METHODS: Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test. RESULTS: All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and ß-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice. CONCLUSIONS: We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene/pharmacology , Mammary Neoplasms, Animal/genetics , NF-E2-Related Factor 2/genetics , Adenoma/metabolism , Animal Feed , Animals , Coumarins/pharmacology , Cytosol/metabolism , Disease Progression , Drug Design , Female , Genotype , Liver/metabolism , Lymphoma/metabolism , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Inbred ICR , Mice, Knockout
13.
Mol Ther ; 18(12): 2064-74, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20877346

ABSTRACT

Improved spread of transduction in the central nervous system (CNS) was achieved from intravenous administration of adeno-associated virus serotype-9 (AAV9) to neonatal rats. Spinal lower motor neuron transduction efficiency was estimated to be 78% using the highest vector dose tested at a 12-week interval. The widespread expression could aid studying diseases that affect both the spinal cord and brain, such as amyotrophic lateral sclerosis (ALS). The protein most relevant to neuropathology in ALS is transactive response DNA-binding protein 43 (TDP-43). When expressed in rats, human wild-type TDP-43 rapidly produced symptoms germane to ALS including paralysis of the hindlimbs and muscle wasting, and mortality over 4 weeks that did not occur in controls. The hindlimb atrophy and weakness was evidenced by assessments of rotarod, rearing, overall locomotion, muscle mass, and histology. The muscle wasting suggested denervation, but there was only 14% loss of motor neurons in the TDP-43 rats. Tissues were negative for ubiquitinated, cytoplasmic TDP-43 pathology, suggesting that altering TDP-43's nuclear function was sufficient to cause the disease state. Other relevant pathology in the rats included microgliosis and degenerating neuronal perikarya positive for phospho-neurofilament. The expression pattern encompassed the distribution of neuropathology of ALS, and could provide a rapid, relevant screening assay for TDP-43 variants and other disease-related proteins.


Subject(s)
Amyotrophic Lateral Sclerosis , Central Nervous System , DNA-Binding Proteins/metabolism , Gene Expression , Recombinant Proteins/metabolism , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , DNA-Binding Proteins/genetics , Gene Transfer Techniques , Humans , Rats , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...