Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759624

ABSTRACT

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Subject(s)
CCCTC-Binding Factor , Enhancer Elements, Genetic , Insulin-Like Growth Factor II , RNA, Long Noncoding , SOXB1 Transcription Factors , Animals , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Locus Control Region/genetics , Genomic Imprinting , Genomics/methods
3.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-37781588

ABSTRACT

Enhancer function is frequently investigated piecemeal using truncated reporter assays or single deletion analysis. Thus it remains unclear to what extent enhancer function at native loci relies on surrounding genomic context. Using the Big-IN technology for targeted integration of large DNAs, we analyzed the regulatory architecture of the murine Igf2/H19 locus, a paradigmatic model of enhancer selectivity. We assembled payloads containing a 157-kb functional Igf2/H19 locus and engineered mutations to genetically direct CTCF occupancy at the imprinting control region (ICR) that switches the target gene of the H19 enhancer cluster. Contrasting activity of payloads delivered at the endogenous Igf2/H19 locus or ectopically at Hprt revealed that the Igf2/H19 locus includes additional, previously unknown long-range regulatory elements. Exchanging components of the Igf2/H19 locus with the well-studied Sox2 locus showed that the H19 enhancer cluster functioned poorly out of context, and required its native surroundings to activate Sox2 expression. Conversely, the Sox2 locus control region (LCR) could activate both Igf2 and H19 outside its native context, but its activity was only partially modulated by CTCF occupancy at the ICR. Analysis of regulatory DNA actuation across different cell types revealed that, while the H19 enhancers are tightly coordinated within their native locus, the Sox2 LCR acts more independently. We show that these enhancer clusters typify broader classes of loci genome-wide. Our results show that unexpected dependencies may influence even the most studied functional elements, and our synthetic regulatory genomics approach permits large-scale manipulation of complete loci to investigate the relationship between locus architecture and function.

4.
Nature ; 623(7986): 423-431, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914927

ABSTRACT

Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Genetic Engineering , Genome , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Alleles , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/virology , DNA/genetics , Drug Resistance, Microbial/genetics , Genetic Engineering/methods , Genome/genetics , Mouse Embryonic Stem Cells/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/genetics , Tumor Suppressor Protein p53/genetics
5.
Mol Cell ; 83(7): 1140-1152.e7, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36931273

ABSTRACT

Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression. We found that two DHSs comprising a handful of key TF recognition sequences were each sufficient for long-range activation of Sox2 expression. By contrast, three nearby DHSs were entirely context dependent, showing no activity alone but dramatically augmenting the activity of the autonomous DHSs. Our results highlight the role of context in modulating genomic regulatory element function, and our synthetic regulatory genomics approach provides a roadmap for the dissection of other genomic loci.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Animals , Mice , Enhancer Elements, Genetic , Genomics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , SOXB1 Transcription Factors/metabolism
6.
Nat Med ; 29(3): 632-645, 2023 03.
Article in English | MEDLINE | ID: mdl-36928817

ABSTRACT

The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.


Subject(s)
Multiple Myeloma , Mice , Animals , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , CD8-Positive T-Lymphocytes , Immune Evasion , T-Lymphocytes, Regulatory , Immunotherapy/adverse effects , Tumor Microenvironment/genetics
7.
Nat Commun ; 13(1): 7619, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494342

ABSTRACT

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development. Among MDS-specific lesions, we detect the upregulation of the transcription factor DNA Damage Inducible Transcript 3 (DDIT3). Overexpression of DDIT3 in human healthy HSCs induces an MDS-like transcriptional state, and dyserythropoiesis, an effect associated with a failure in the activation of transcriptional programs required for normal erythroid differentiation. Moreover, DDIT3 knockdown in CD34+ cells from MDS patients with anemia is able to restore erythropoiesis. These results identify DDIT3 as a driver of dyserythropoiesis, and a potential therapeutic target to restore the inefficient erythroid differentiation characterizing MDS patients.


Subject(s)
Myelodysplastic Syndromes , Transcription Factors , Adult , Humans , Aged , Transcription Factors/genetics , Transcription Factors/metabolism , Myelodysplastic Syndromes/pathology , Erythropoiesis/genetics , Hematopoietic Stem Cells/metabolism , Gene Expression Regulation , Transcription Factor CHOP/genetics
9.
Nat Commun ; 12(1): 2850, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990600

ABSTRACT

Functional assessment of disease-associated sequence variation at non-coding regulatory elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority of sequence variation affects transcription factor (TF) occupancy, yet low sequence diversity in human populations means that no experimental assessment is available for the majority of disease-associated variants. Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells from 5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in these hybrids enables precise quantification of effect size and cell-type specificity for hundreds of thousands of variants throughout the mouse genome. We show that chromatin-altering variants delineate characteristic sensitivity profiles for hundreds of TF motifs. We develop a compendium of TF-specific sensitivity profiles accounting for genomic context effects. Finally, we link maps of allelic accessibility to allelic transcript levels in the same samples. This work provides a foundation for quantitative prediction of cell-type specific effects of non-coding variation on TF activity, which will facilitate both fine-mapping and systems-level analyses of common disease-associated variation in human genomes.


Subject(s)
DNA/genetics , Alleles , Animals , Binding Sites/genetics , Chromatin/genetics , Chromatin/metabolism , Chromosome Mapping , DNA/metabolism , Female , Gene Expression Regulation , Genetic Variation , Genome, Human , Humans , Hybridization, Genetic , Male , Mice , Mice, 129 Strain , Mice, Inbred C3H , Mice, Inbred C57BL , Organ Specificity/genetics , Penetrance , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism
10.
J Med Chem ; 64(6): 3392-3426, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33661013

ABSTRACT

Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC50 < 200 nM). Additionally, lysine methyltransferase G9a inhibitory activity is achieved (from a low nanomolar range) by introduction of a key lysine mimic group at the 7-position of the quinoline ring. The corresponding epigenetic functional cellular responses are observed: histone-3 acetylation, DNA hypomethylation, and decreased histone-3 methylation at lysine-9. These chemical probes, multitarget epigenetic inhibitors, were validated against the multiple myeloma cell line MM1.S, demonstrating promising in vitro activity of 12a (CM-444) with GI50 of 32 nM, an adequate therapeutic window (>1 log unit), and a suitable pharmacokinetic profile. In vivo, 12a achieved significant antitumor efficacy in a xenograft mouse model of human multiple myeloma.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Histocompatibility Antigens/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice, Inbred BALB C , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism
11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649239

ABSTRACT

Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Loci , Genome, Human , Human Embryonic Stem Cells , Mouse Embryonic Stem Cells , Animals , Cell Line , Humans , Mice
12.
Leukemia ; 35(5): 1438-1450, 2021 05.
Article in English | MEDLINE | ID: mdl-33597729

ABSTRACT

Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples. lncRNAs accounted for 82% of the MM transcriptome and were more heterogeneously expressed than coding genes. A total of 10,351 overexpressed and 9,535 downregulated lncRNAs were identified in MM patients when compared with normal bone-marrow plasma cells. Transcriptional dynamics study of lncRNAs in the context of normal B-cell maturation revealed 989 lncRNAs with exclusive expression in MM, among which 89 showed de novo epigenomic activation. Knockdown studies on one of these lncRNAs, SMILO (specific myeloma intergenic long non-coding RNA), resulted in reduced proliferation and induction of apoptosis of MM cells, and activation of the interferon pathway. We also showed that the expression of lncRNAs, together with clinical and genetic risk alterations, stratified MM patients into several progression-free survival and overall survival groups. In summary, our global analysis of the lncRNAs transcriptome reveals the presence of specific lncRNAs associated with the biological and clinical behavior of the disease.


Subject(s)
Multiple Myeloma/genetics , RNA, Long Noncoding/genetics , Transcriptome/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Progression-Free Survival
13.
Genome Res ; 30(12): 1781-1788, 2020 12.
Article in English | MEDLINE | ID: mdl-33093069

ABSTRACT

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.


Subject(s)
COVID-19 , Genome, Viral , Pandemics , Phylogeny , SARS-CoV-2/genetics , Whole Genome Sequencing , COVID-19/epidemiology , COVID-19/genetics , COVID-19/transmission , Female , Humans , Male , New York City
14.
Genome Res ; 30(9): 1217-1227, 2020 09.
Article in English | MEDLINE | ID: mdl-32820006

ABSTRACT

Multiple myeloma (MM) is a plasma cell neoplasm associated with a broad variety of genetic lesions. In spite of this genetic heterogeneity, MMs share a characteristic malignant phenotype whose underlying molecular basis remains poorly characterized. In the present study, we examined plasma cells from MM using a multi-epigenomics approach and demonstrated that, when compared to normal B cells, malignant plasma cells showed an extensive activation of regulatory elements, in part affecting coregulated adjacent genes. Among target genes up-regulated by this process, we found members of the NOTCH, NF-kB, MTOR signaling, and TP53 signaling pathways. Other activated genes included sets involved in osteoblast differentiation and response to oxidative stress, all of which have been shown to be associated with the MM phenotype and clinical behavior. We functionally characterized MM-specific active distant enhancers controlling the expression of thioredoxin (TXN), a major regulator of cellular redox status and, in addition, identified PRDM5 as a novel essential gene for MM. Collectively, our data indicate that aberrant chromatin activation is a unifying feature underlying the malignant plasma cell phenotype.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Multiple Myeloma/genetics , Plasma Cells/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Humans , NF-kappa B/metabolism , Osteogenesis/genetics , Receptors, Notch/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Thioredoxins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation
15.
Cancers (Basel) ; 12(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668727

ABSTRACT

The authors would like to make a correction to their published paper [...].

16.
medRxiv ; 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32511587

ABSTRACT

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.

17.
Nat Cancer ; 1(11): 1066-1081, 2020 11.
Article in English | MEDLINE | ID: mdl-34079956

ABSTRACT

We report a systematic analysis of the DNA methylation variability in 1,595 samples of normal cell subpopulations and 14 tumor subtypes spanning the entire human B-cell lineage. Differential methylation among tumor entities relates to differences in cellular origin and to de novo epigenetic alterations, which allowed us to build an accurate machine learning-based diagnostic algorithm. We identify extensive patient-specific methylation variability in silenced chromatin associated with the proliferative history of normal and neoplastic B cells. Mitotic activity generally leaves both hyper- and hypomethylation imprints, but some B-cell neoplasms preferentially gain or lose DNA methylation. Subsequently, we construct a DNA methylation-based mitotic clock called epiCMIT, whose lapse magnitude represents a strong independent prognostic variable in B-cell tumors and is associated with particular driver genetic alterations. Our findings reveal DNA methylation as a holistic tracer of B-cell tumor developmental history, with implications in the differential diagnosis and prediction of clinical outcome.


Subject(s)
Epigenome , Neoplasms , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenome/genetics , Gene Expression Regulation, Neoplastic , Humans
18.
Cancers (Basel) ; 11(10)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554341

ABSTRACT

Gene regulation through DNA methylation is a well described phenomenon that has a prominent role in physiological and pathological cell-states. This epigenetic modification is usually grouped in regions denominated CpG islands, which frequently co-localize with gene promoters, silencing the transcription of those genes. Recent genome-wide DNA methylation studies have challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside promoters is able to influence cell-type specific gene expression programs under physiologic or pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation has allowed for the identification of specific epigenomic changes that affect enhancer regulatory regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression. In this review, we summarize the novel evidence for the molecular and biological regulation of DNA methylation in enhancer regions and the dynamism of these changes contributing to the fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms. The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid derived neoplasms.

19.
Haematologica ; 104(8): 1572-1579, 2019 08.
Article in English | MEDLINE | ID: mdl-30655376

ABSTRACT

In this study we interrogated the DNA methylome of myelofibrosis patients using high-density DNA methylation arrays. We detected 35,215 differentially methylated CpG, corresponding to 10,253 genes, between myelofibrosis patients and healthy controls. These changes were present both in primary and secondary myelofibrosis, which showed no differences between them. Remarkably, most differentially methylated CpG were located outside gene promoter regions and showed significant association with enhancer regions. This aberrant enhancer hypermethylation was negatively correlated with the expression of 27 genes in the myelofibrosis cohort. Of these, we focused on the ZFP36L1 gene and validated its decreased expression and enhancer DNA hypermethylation in an independent cohort of patients and myeloid cell-lines. In vitro reporter assay and 5'-azacitidine treatment confirmed the functional relevance of hyper-methylation of ZFP36L1 enhancer. Furthermore, in vitro rescue of ZFP36L1 expression had an impact on cell proliferation and induced apoptosis in SET-2 cell line indicating a possible role of ZFP36L1 as a tumor suppressor gene in myelofibrosis. Collectively, we describe the DNA methylation profile of myelofibrosis, identifying extensive changes in enhancer elements and revealing ZFP36L1 as a novel candidate tumor suppressor gene.


Subject(s)
Butyrate Response Factor 1/genetics , DNA Methylation , Enhancer Elements, Genetic/genetics , Epigenomics/methods , Primary Myelofibrosis/genetics , Apoptosis/drug effects , Butyrate Response Factor 1/metabolism , Butyrate Response Factor 1/pharmacology , Case-Control Studies , Cell Line , Cell Proliferation/drug effects , Epigenesis, Genetic , Genes, Tumor Suppressor , Humans
20.
J Cell Physiol ; 234(1): 692-708, 2018 01.
Article in English | MEDLINE | ID: mdl-30132846

ABSTRACT

Sorafenib is the unique accepted molecular targeted drug for the treatment of patients in advanced stage of hepatocellular carcinoma. The current study evaluated cell signaling regulation of endoplasmic reticulum (ER) stress, c-Jun-N-terminal kinase (JNK), Akt, and 5'AMP-activated protein kinase (AMPK) leading to autophagy and apoptosis induced by sorafenib. Sorafenib induced early (3-12 hr) ER stress characterized by an increase of Ser51 P-eIF2α/eIF2α, C/EBP homologous protein (CHOP), IRE1α, and sXBP1, but a decrease of activating transcription factor 6 expression, overall temporally associated with the increase of Thr183,Tyr185 P-JNK1/2/JNK1/2, Thr172 P-AMPKα, Ser413 P-Foxo3a, Thr308 P-AKt/AKt and Thr32 P-Foxo3a/Foxo3a ratios, and reduction of Ser2481 P-mammalian target of rapamycin (mTOR)/mTOR and protein translation. This pattern was related to a transient increase of tBid, Bim EL , Beclin-1, Bcl-xL, Bcl-2, autophagy markers, and reduction of myeloid cell leukemia-1 (Mcl-1) expression. The progressive increase of CHOP expression, and reduction of Thr308 P-AKt/AKt and Ser473 P-AKt/AKt ratios were associated with the reduction of autophagic flux and an additional upregulation of Bim EL expression and caspase-3 activity (24 hr). Small interfering-RNA (si-RNA) assays showed that Bim, but not Bak and Bax, was involved in the induction of caspase-3 in sorafenib-treated HepG2 cells. Sorafenib increased autophagic and apoptotic markers in tumor-derived xenograft model. In conclusion, the early sorafenib-induced ER stress and regulation of JNK and AMPK-dependent signaling were related to the induction of survival autophagic process. The sustained drug treatment induced a progressive increase of ER stress and PERK-CHOP-dependent rise of Bim EL , which was associated with the shift from autophagy to apoptosis. The kinetic of Bim EL expression profile might also be related to the tight balance between AKt- and AMPK-related signaling leading to Foxo3a-dependent BIM EL upregulation.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Liver Neoplasms/drug therapy , Neoplasm Proteins/genetics , Sorafenib/administration & dosage , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Biomarkers, Tumor/genetics , Caspase 3/genetics , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , JNK Mitogen-Activated Protein Kinases/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Signal Transduction/drug effects , Transcription Factor CHOP/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...