Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 34(12): 2755-2763, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983185

ABSTRACT

Vanillin is the main component of vanilla flavor and is naturally produced from an orchid. However, due to the high cost and time-intensive nature of cultivating natural vanilla pods, most of the vanillin is mainly artificially manufactured. Existing methodologies, such as isotope ratio mass spectrometry (IRMS) and site-specific natural isotopic fractionation by nuclear magnetic resonance (SNIF-NMR), are employed to differentiate natural vanillin from other sources based on carbon and hydrogen isotope measurements. Nevertheless, these methods have limitations, as the carbon isotopic ratio can be counterfeited by adding commercially available enriched vanillin. For this research, we purified 1 mg of vanillin from pods from various geographical and botanical sources. We developed a novel method for analyzing 13C/12C and 18O/16O isotopic ratios of vanillin using direct injection analysis coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This innovative approach enables the examination of bulk vanillin carbon and oxygen isotopic ratios, as well as specific molecular fragments. By analyzing a characteristic vanillin fragment that provides site-specific 18O/16O isotopic ratio data, we achieved superior clustering and discrimination of samples based on their botanical source and geographical origin. Our proposed method holds significant potential for vanillin authentication and can be performed using a mere 20 µg of pure vanillin in just 10 min of analysis time. Subsequent research should focus on acquiring additional vanillin samples from diverse botanical, geographical, and biosynthetic origins while exploring various isotopic ratios to further enhance the reproducibility and reliability of this methodology.


Subject(s)
Carbon , Oxygen Isotopes , Reproducibility of Results , Carbon Isotopes/chemistry
2.
Plants (Basel) ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36904008

ABSTRACT

Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package "Salsa" (version 1.0).

3.
Pest Manag Sci ; 79(1): 368-380, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36165215

ABSTRACT

BACKGROUND: Metabolic reconfiguration in plants is a hallmark response to insect herbivory that occurs in the attack site and systemically in undamaged tissues. Metabolomic systemic responses can occur rapidly while the herbivore is still present and may persist in newly developed tissue to counterattack future herbivore attacks. This study analyzed the metabolic profile of local and newly developed distal (systemic) leaves of husk tomato (Physalis philadelphica) plants after whitefly Trialeurodes vaporariorum infestation. In addition, the effect of these metabolomic adjustments on whitefly oviposition and development was evaluated. RESULTS: Our results indicate that T. vaporariorum infestation induced significant changes in husk tomato metabolic profiles, not only locally in infested leaves, but also systemically in distal leaves that developed after infestation. The distinctive metabolic profile produced in newly developed leaves affected whitefly nymphal development but did not affect female oviposition, suggesting that changes driven by whitefly herbivory persist in the young leaves that developed after the infestation event to avoid future herbivore attacks. CONCLUSIONS: This report contributes to further understanding the plant responses to sucking insects by describing the metabolic reconfiguration in newly developed, undamaged systemic leaf tissues of husk tomato plants after whitefly infestation. © 2022 Society of Chemical Industry.


Subject(s)
Hemiptera , Physalis , Animals , Metabolomics , Plant Leaves
4.
Plants (Basel) ; 10(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808668

ABSTRACT

Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and domestication. Here, we performed a time-course experiment to estimate standardized gene expression profiles with respect to fruit development for six domesticated and four wild chili pepper ancestors. We sampled the transcriptomes every 10 days from flowering to fruit maturity, and found that the mean standardized expression profiles for domesticated and wild accessions significantly differed. The mean standardized expression was higher and peaked earlier for domesticated vs. wild genotypes, particularly for genes involved in the cell cycle that ultimately control fruit size. We postulate that these gene expression changes are driven by selection pressures during domestication and show a robust network of cell cycle genes with a time shift in expression, which explains some of the differences between domesticated and wild phenotypes.

5.
Front Cell Dev Biol ; 8: 562940, 2020.
Article in English | MEDLINE | ID: mdl-33330447

ABSTRACT

The axolotl (Ambystoma mexicanum) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.

6.
Front Plant Sci ; 11: 608850, 2020.
Article in English | MEDLINE | ID: mdl-33552101

ABSTRACT

Methodology combining mass spectrometry imaging (MSI) with ion mobility separation (IMS) has emerged as a biological imaging technique due to its versatility, sensitivity and label-free approach. This technique has been shown to separate isomeric compounds such as lipids, amino acids, carboxylic acids and carbohydrates. This report describes mass spectrometry imaging in combination with traveling-wave ion mobility separation and matrix-assisted laser desorption/ionization (MALDI). Positive ionization mode was used to locate fructans on tissue printed sections of Agave rhizome and stem tissue and distinguished fructan isoforms. Here we show the location of fructans ranging from DP3 to DP17 to be differentially abundant across the stem tissue and for the first time, experimental collision cross sections of endogenous fructan structures have been collected, revealing at least two isoforms for fructans of DP4, DP5, DP6, DP7, DP8, DP10, and DP11. This demonstrates that complex fructans such as agavins can be located and their isoforms resolved using a combination of MALDI, IMS, and MSI, without the need for extraction or derivatization. Use of this methodology uncovered patterns of fructan localization consistent with functional differences where higher DP fructans are found toward the central section of the stem supporting a role in long term carbohydrate storage whereas lower DP fructans are concentrated in the highly vascularized central core of rhizomes supporting a role in mobilization of carbohydrates from the mother plant to developing offsets. Tissue specific patterns of expression of genes encoding enzymes involved in fructan metabolism are consistent with fructan structures and localization.

SELECTION OF CITATIONS
SEARCH DETAIL