Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 138: 73-77, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28434643

ABSTRACT

The aim of this research was to evaluate the cell cycle redistribution and activation of early and late apoptotic pathways in lymphoma cells after treatment with 177Lu-anti-CD20. Experimental and computer models were used to calculate the radiation absorbed dose to cancer cell nuclei. The computer model (Monte Carlo, PENELOPE) consisted of twenty spheres representing cells with an inner sphere (cell nucleus) embedded in culture media. Radiation emissions of the radiopharmaceutical located in cell membranes and in culture media were considered for nuclei dose calculations. Flow cytometric analyses demonstrated that doses as low as 4.8Gy are enough to induce cell cycle arrest and activate late apoptotic pathways.


Subject(s)
Apoptosis/radiation effects , Lutetium/therapeutic use , Lymphoma/radiotherapy , Radioimmunotherapy/methods , Radioisotopes/therapeutic use , Rituximab/therapeutic use , Apoptosis/immunology , Cell Line, Tumor , Dose-Response Relationship, Radiation , Flow Cytometry , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , Immunoconjugates/therapeutic use , Lymphoma/immunology , Lymphoma/pathology
2.
Anticancer Agents Med Chem ; 18(11): 1508-1520, 2018.
Article in English | MEDLINE | ID: mdl-29189179

ABSTRACT

Estrogen (17ß-estradiol) is essential for normal growth and differentiation in the mammary gland. In the last three decades, previous investigations have revealed that Estrogen Receptor Alpha (ERα) plays a critical role in breast cancer. More recently, observations regarding the widespread expression of ERß-like proteins in normal and neoplastic mammary tissues have suggested that ERß is also involved in the mentioned pathology. Design of new drugs both steroidal and nonsteroidal that target any of these receptors represents a promise to treat breast cancer although it remains a challenge due to the sequence similarity between their catalytic domains. In this work, we propose a new set of compounds that could effectively target the estrogen receptors ERα and ERß. These ligands were designed based on the chemical structure of the ERß-selective agonist Diarylpropionitrile (DPN). The designed ligands were submitted to in silico ADMET studies, yielding in a filtered list of ligands that showed better drug-like properties. Molecular dynamics simulations of both estrogen receptors and docking analysis were carried-out employing the designed compounds, from which two were chosen due to their promising characteristics retrieved from theoretical results (docking analysis or targeting receptor predictions). They were chemically synthetized and during the process, two precursor ligands were also obtained. These four ligands were subjected to biological studies from which it could be detected that compound mol60b dislplayed inhibitory activity and its ability to activate the transcription via an estrogenic mechanism of action was also determined. Interestinly, this observation can be related to theoretical binding free energy calculations, where the complex: ERß-mol60b showed the highest energy ΔGbind value in comparison to others.


Subject(s)
Antineoplastic Agents/pharmacology , Nitriles/pharmacology , Propionates/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , MCF-7 Cells , Models, Molecular , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Propionates/chemical synthesis , Propionates/chemistry , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Structure-Activity Relationship
3.
Appl Radiat Isot ; 68(12): 2274-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20580238

ABSTRACT

(99m)Tc-HYNIC labeled Lys(3)-bombesin has shown specific binding to gastrin-releasing peptide receptors (GRP-r) over-expressed in cancer cells. Click chemistry offers an innovative functionalization strategy for biomolecules such as bombesin. The aim of this research was to apply a click chemistry approach for [(99m)Tc(CO)(3)] labeling of Lys(3)-bombesin and to compare the in vitro MCF7 breast cancer cell uptake and biodistribution profile in mice with that of (99m)Tc-EDDA/HYNIC-Lys(3)-bombesin. The results suggest a higher lipophilicity for (99m)Tc(CO)(3)-triazole-Lys(3)-bombesin which explains its higher in vivo hepatobiliary elimination. Pancreas-to-blood ratio for (99m)Tc(CO)(3)-triazole-Lys(3)-bombesin was 4.46 at 3 h and both bombesin radiopharmaceuticals showed specific recognition for GRP receptors in MCF7 cancer cells. Click chemistry is a reliable approach for [(99m)Tc(CO)(3)] labeling of Lys(3)-bombesin.


Subject(s)
Bombesin/chemistry , Organotechnetium Compounds/chemistry , Animals , Cell Line, Tumor , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...