Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141207

ABSTRACT

A double-sided variant of the information bottleneck method is considered. Let (X,Y) be a bivariate source characterized by a joint pmf PXY. The problem is to find two independent channels PU|X and PV|Y (setting the Markovian structure U→X→Y→V), that maximize I(U;V) subject to constraints on the relevant mutual information expressions: I(U;X) and I(V;Y). For jointly Gaussian X and Y, we show that Gaussian channels are optimal in the low-SNR regime but not for general SNR. Similarly, it is shown that for a doubly symmetric binary source, binary symmetric channels are optimal when the correlation is low and are suboptimal for high correlations. We conjecture that Z and S channels are optimal when the correlation is 1 (i.e., X=Y) and provide supporting numerical evidence. Furthermore, we present a Blahut-Arimoto type alternating maximization algorithm and demonstrate its performance for a representative setting. This problem is closely related to the domain of biclustering.

2.
Entropy (Basel) ; 23(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068901

ABSTRACT

Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix A and a recovery algorithm, such that the sparse binary vector x can be recovered reliably from the measurements y=Ax+σz, where z is additive white Gaussian noise. We propose to design A as a parity check matrix of a low-density parity-check code (LDPC) and to recover x from the measurements y using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of A. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.

3.
IEEE J Sel Top Signal Process ; 12(5): 825-840, 2018 Oct.
Article in English | MEDLINE | ID: mdl-33747333

ABSTRACT

Systems that capture and process analog signals must first acquire them through an analog-to-digital converter. While subsequent digital processing can remove statistical correlations present in the acquired data, the dynamic range of the converter is typically scaled to match that of the input analog signal. The present paper develops an approach for analog-to-digital conversion that aims at minimizing the number of bits per sample at the output of the converter. This is attained by reducing the dynamic range of the analog signal by performing a modulo operation on its amplitude, and then quantizing the result. While the converter itself is universal and agnostic of the statistics of the signal, the decoder operation on the output of the quantizer can exploit the statistical structure in order to unwrap the modulo folding. The performance of this method is shown to approach information theoretical limits, as captured by the rate-distortion function, in various settings. An architecture for modulo analog-to-digital conversion via ring oscillators is suggested, and its merits are numerically demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...