Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 169: 162-8, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25236212

ABSTRACT

A new analytical procedure involving the use of water and a low percentage of ethanol combined to high temperature liquid chromatography-tandem mass spectrometry has been developed for the determination of nine high-intensity sweeteners in a variety of drink samples. The method permitted the analysis in 23min (including column reequilibration) and consuming only 0.85mL of a green organic solvent (ethanol). This methodology provided limits of detection (after 50-fold dilution) in the 0.05-10mg/L range, with recoveries (obtained from five different types of beverages) being in the 86-110% range and relative standard deviation values lower than 12%. Finally, the method was applied to 25 different samples purchased in Spain, where acesulfame and sucralose were the most frequently detected analytes (>50% of the samples) and cyclamate was found over the legislation limit set by the European Union in a sample and at the regulation boundary in three others.


Subject(s)
Beverages/analysis , Sweetening Agents/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Cyclamates/analysis , European Union , Spain , Tandem Mass Spectrometry/instrumentation , Temperature
2.
J Chromatogr A ; 1320: 10-6, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24210305

ABSTRACT

An analytical method for the determination of six artificial sweeteners in sewage sludge has been developed. The procedure is based on pressurised liquid extraction (PLE) with water followed by solid-phase extraction (SPE) and subsequent liquid chromatography-tandem mass spectrometry analysis. After optimisation of the different PLE parameters, extraction with aqueous 500mM formate buffer (pH 3.5) at 80°C during a single static cycle of 21min proved to be best conditions. After a subsequent SPE, quantification limits, referred to dry weight (dw) of sewage sludge, ranged from 0.3ng/g for acesulfame (ACE) to 16ng/g for saccharin (SAC) and neohespiridine dihydrochalcone. The trueness, expressed as recovery, ranged between 72% and 105% and the precision, expressed as relative standard deviation, was lower than 16%. Moreover, the method proved its linearity up to the 2µg/g range. Finally, the described method was applied to the determination of the artificial sweeteners in primary and secondary sewage sludge from urban wastewater treatment plants. Four of the six studied artificial sweeteners (ACE, cyclamate, SAC and sucralose) were found in the samples at concentrations ranging from 17 to 628ng/g dw.


Subject(s)
Chromatography, Liquid/methods , Sewage/chemistry , Sweetening Agents/analysis , Tandem Mass Spectrometry/methods , Buffers , Hydrogen-Ion Concentration , Limit of Detection , Pressure , Reproducibility of Results , Solid Phase Extraction , Temperature
3.
J Chromatogr A ; 1256: 197-205, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22885054

ABSTRACT

The development and performance evaluation of an analytical method for the determination of six artificial sweeteners in environmental waters using solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry are presented. To this end, different SPE alternatives have been evaluated: polymeric reversed-phase (Oasis HLB, Env+, Plexa and Strata X), and mixed-mode with either weak (Oasis WAX) or strong anionic-exchange (Oasis MAX and Plexa PAX) sorbents. Among them, reversed-phase sorbents, particularly Oasis HLB and Strata X, showed the best performance. Oasis HLB provided good trueness (recoveries: 73-112%), precision (RSD<10%) and limits of quantification (LOQ: 0.01-0.5 µg/L). Moreover, two LC separation mechanisms were evaluated: reversed-phase (RPLC) and hydrophilic interaction (HILIC), with RPLC providing better performance than HILIC. The final application of the method showed the presence of acesulfame, cyclamate, saccharin and sucralose in the wastewater and surface water samples analyzed at concentrations up to 54 µg/L.


Subject(s)
Chromatography, Liquid/methods , Sweetening Agents/analysis , Tandem Mass Spectrometry/methods , Water/chemistry , Limit of Detection , Reproducibility of Results , Solid Phase Extraction
4.
J Chromatogr A ; 1238: 91-104, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22494641

ABSTRACT

Mixed-mode stationary phases are gaining adepts in liquid chromatography (LC) as more and more applications are published and new commercial columns appear in the market ought to their ability to retain and separate analytes with multiple functionalities. The increased number of adjustable variables gives these columns an enhanced value for the chromatographer, but, on the other hand, it complicates the process of developing satisfactory separations when complex samples must be analyzed. Thus, the availability of computer assisted methods development (CAMD) tools is highly desirable in this field. Therefore, the first specific tool for the CAMD of LC separations in mixed-mode columns is presented. The tool consists in two processes. The first one develops a retention model for peaks in a predefined experimental domain of pH and buffer concentration. In this domain, the retention as a function of the proportion of organic modifier is modeled using a two-stage re-calibration process departing from isocratic retention data and then, from gradient elutions. With this two-stage approach, reliability is gained. In the second process, the model is finally interpolated and used for the unattended optimization of the different possible elution modes available in these columns. This optimization process is driven by an evolutionary algorithm. The development and application of this new chemometrics tool is demonstrated by the optimization of a mixture of neutral and ionizable compounds. Hence, several different types of gradients were generated, showing a good agreement between simulated and experimental data, with retention time errors lower than 5% in most cases. On the other hand, classical CAMD tools, such as design of experiments, were unable to efficiently deal with mixed-mode optimizations, rendering errors above 30% for several compounds.


Subject(s)
Chromatography, Liquid/methods , Models, Chemical , Software , Computer Simulation , Hydrogen-Ion Concentration , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...