Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 630(8015): 109-115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778116

ABSTRACT

Chiral molecules, used in applications such as enantioselective photocatalysis1, circularly polarized light detection2 and emission3 and molecular switches4,5, exist in two geometrical configurations that are non-superimposable mirror images of each other. These so-called (R) and (S) enantiomers exhibit different physical and chemical properties when interacting with other chiral entities. Attosecond technology might enable influence over such interactions, given that it can probe and even direct electron motion within molecules on the intrinsic electronic timescale6 and thereby control reactivity7-9. Electron currents in photoexcited chiral molecules have indeed been predicted to enable enantiosensitive molecular orientation10, but electron-driven chiral dynamics in neutral molecules have not yet been demonstrated owing to the lack of ultrashort, non-ionizing and perturbative light pulses. Here we use time-resolved photoelectron circular dichroism (TR-PECD)11-15 with an unprecedented temporal resolution of 2.9 fs to map the coherent electronic motion initiated by ultraviolet (UV) excitation of neutral chiral molecules. We find that electronic beatings between Rydberg states lead to periodic modulations of the chiroptical response on the few-femtosecond timescale, showing a sign inversion in less than 10 fs. Calculations validate this and also confirm that the combination of the photoinduced chiral current with a circularly polarized probe pulse realizes an enantioselective filter of molecular orientations following photoionization. We anticipate that our approach will enable further investigations of ultrafast electron dynamics in chiral systems and reveal a route towards enantiosensitive charge-directed reactivity.

3.
Phys Chem Chem Phys ; 24(44): 26962-26991, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36342056

ABSTRACT

Today we are witnessing the electric-dipole revolution in chiral measurements. Here we reflect on its lessons and outcomes, such as the perspective on chiral measurements using the complementary principles of "chiral reagent" and "chiral observer", the hierarchy of scalar, vectorial and tensorial enantio-sensitive observables, the new properties of the chiro-optical response in the ultrafast and non-linear domains, and the geometrical magnetism associated with the chiral response in photoionization. The electric-dipole revolution is a landmark event. It has opened routes to extremely efficient enantio-discrimination with a family of new methods. These methods are governed by the same principles but work in vastly different regimes - from microwaves to optical light; they address all molecular degrees of freedom - electronic, vibrational and rotational, and use flexible detection schemes, i.e. detecting photons or electrons, making them applicable to different chiral phases, from gases to liquids to amorphous solids. The electric-dipole revolution has also enabled enantio-sensitive manipulation of chiral molecules with light. This manipulation includes exciting and controlling ultrafast helical currents in vibronic states of chiral molecules, enantio-sensitive control of populations in electronic, vibronic and rotational molecular states, and opens the way to efficient enantio-separation and enantio-sensitive trapping of chiral molecules. The word "perspective" has two meanings: an "outlook" and a "point of view". In this perspective article, we have tried to cover both meanings.

4.
Phys Chem Chem Phys ; 24(22): 13605-13615, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35621456

ABSTRACT

We propose a geometric approach to the description and analysis of photoelectron angular distributions resulting from isotropic samples in the case of few-photon ionization by electric fields of arbitrary polarization. This approach formulates the standard photoionization observables - the bl,m expansion coefficients of the photoelectron angular distribution, in terms of geometrical properties of the vector field D⃑(k⃑) ≡ 〈k⃑|d⃑|0〉 describing the electronic transition from a bound state |0〉 into a scattering state |k⃑〉 - the photoionization transition dipole. Besides revealing selection rules for the enantio-sensitivity of bl,m coefficients in multiphoton ionization, our approach yields very compact expressions for both chiral and achiral molecules revealing how the molecular rotational invariants couple to the rotational invariants of the setup defined by the electric field polarization and the arrangement of photoelectron detectors. We apply this approach to one-photon ionization and find that the forward-backward asymmetry parameter b1,0, emerging exclusively in chiral molecules and encoded in the field B⃑(k⃑) ≡ iD⃑*(k⃑) × D⃑(k⃑), is sensitive only to the components of D⃑(k⃑) perpendicular to k⃑, while the regular asymmetry parameter b2,0 emerging in chiral and achiral molecules is sensitive only to the component of D⃑(k⃑) parallel to k⃑. Next, we analyze resonantly enhanced two-photon ionization and show that b0,0 and b1,0 can be written in terms of an effectively stretched D⃑(k⃑), and how b1,0 and b3,0 can be used to probe B⃑(k⃑).

5.
Phys Chem Chem Phys ; 24(12): 7264-7273, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274634

ABSTRACT

We discuss how tensorial observables, available in photoelectron angular distributions resulting from interaction between isotropic chiral samples and cross polarized ω-2ω bichromatic fields, allow for chiral discrimination without chiral light and within the electric-dipole approximation. We extend the concept of chiral setup [A. F. Ordonez and O. Smirnova, Phys. Rev. A, 2018, 98, 063428], which explains how chiral discrimination can be achieved in the absence of chiral light, to the case of tensorial observables. We derive selection rules for the enantiosensitivity and dichroism of the bl,m coefficients describing the photoelectron angular distribution valid for both weak and strong fields and for arbitrary ω-2ω relative phase. Explicit expressions for simple perturbative cases are given. We find that, besides the known dichroic non-enantiosensitive [R. E. Goetz, C. P. Koch and L. Greenman, J. Chem. Phys., 2019, 151, 074106], and dichroic-and-enantiosensitive bl,m coefficients found recently [P. V. Demekhin, Phys. Rev. A, 2019, 99, 063406], there are also enantiosensitive non-dichroic bl,m coefficients. These reveal the molecular enantiomer independently of the relative phase between the two colors and are therefore observable even in the absence of stabilization of the ω-2ω relative phase.

6.
Opt Express ; 30(4): 4659-4667, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209442

ABSTRACT

High harmonic generation (HHG) records the ultrafast electronic response of matter to light, encoding key properties of the interrogated quantum system, such as chirality. The first implementation of chiral HHG [Cireasa et al, Nat. Phys.11, 654 (2015)10.1038/nphys3369] relied on the weak electronic response of a medium of randomly oriented chiral molecules to the magnetic component of an elliptically polarized wave, yielding relatively weak chiro-optical signals. Here we apply state-of-the-art semi-analytical modelling to show that elliptically polarized light can drive a strong chiral response in chiral molecules via purely electric-dipole interactions - the magnetic component of the wave does not participate at all. This strong chiro-optical response, which remains hidden in standard HHG experiments, can be mapped into the macroscopic far-field signal using a non-collinear configuration, creating new opportunities for imaging chiral matter and chiral dynamics on ultrafast time scales.

7.
Phys Chem Chem Phys ; 24(9): 5720-5728, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35188152

ABSTRACT

Chiral molecules ionized by circularly polarized fields produce a photoelectron current orthogonal to the polarization plane. This current has opposite directions for opposite enantiomers and provides an extremely sensitive probe of molecular handedness. Recently, such photoelectron currents have been measured in the strong-field ionization regime, where they may serve as an ultrafast probe of molecular chirality. Here we provide a mechanism for the emergence of such strong-field photoelectron currents in terms of two propensity rules that link the properties of the initial electronic chiral state to the direction of the photoelectron current.

8.
Nat Commun ; 12(1): 3951, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34168139

ABSTRACT

Structured light, which exhibits nontrivial intensity, phase, and polarization patterns in space, has key applications ranging from imaging and 3D micromanipulation to classical and quantum communication. However, to date, its application to molecular chirality has been limited by the weakness of magnetic interactions. Here we structure light's local handedness in space to introduce and realize an enantio-sensitive interferometer for efficient chiral recognition without magnetic interactions, which can be seen as an enantio-sensitive version of Young's double slit experiment. Upon interaction with isotropic chiral media, such chirality-structured light effectively creates chiral emitters of opposite handedness, located at different positions in space. We show that if the distribution of light's handedness breaks left-right symmetry, the interference of these chiral emitters leads to unidirectional bending of the emitted light, in opposite directions in media of opposite handedness, even if the number of the left-handed and right-handed emitters excited in the medium is exactly the same. Our work introduces the concepts of polarization of chirality and chirality-polarized light, exposes the immense potential of sculpting light's local chirality, and offers novel opportunities for efficient chiral discrimination, enantio-sensitive optical molecular fingerprinting and imaging on ultrafast time scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...