Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
AAPS PharmSciTech ; 25(4): 82, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600288

ABSTRACT

Pressurized metered dose inhalers (pMDIs) require optimized formulations to provide stable, consistent lung delivery. This study investigates the feasibility of novel rugose lipid particles (RLPs) as potential drug carriers in pMDI formulations. The physical stability of RLPs was assessed in three different propellants: the established HFA-134a and HFA-227ea and the new low global-warming-potential (GWP) propellant HFO-1234ze. A feedstock containing DSPC and calcium chloride was prepared without pore forming agent to spray dry two RLP batches at inlet temperatures of 55 °C (RLP55) and 75 °C (RLP75). RLPs performance in pMDI formulations was compared to two reference samples that exhibit significantly different performance when suspended in propellants: well-established engineered porous particles and particles containing 80% trehalose and 20% leucine (80T20L). An accelerated stability study at 40 °C and relative humidity of 7% ± 5% was conducted over 3 months. At different time points, a shadowgraphic imaging technique was used to evaluate the colloidal stability of particles in pMDIs. Field emission electron microscopy with energy dispersive X-ray spectroscopy was used to evaluate the morphology and elemental composition of particles extracted from the pMDIs. After 2 weeks, all 80T20L formulations rapidly aggregated upon agitation and exhibited significantly inferior colloidal stability compared to the other samples. In comparison, both the RLP55 and RLP75 formulations, regardless of the propellant used, retained their rugose structure and demonstrated excellent suspension stability comparable with the engineered porous particles. The studied RLPs demonstrate great potential for use in pMDI formulations with HFA propellants and the next-generation low-GWP propellant HFO-1234ze.


Subject(s)
Fluorocarbons , Hydrocarbons, Fluorinated , Metered Dose Inhalers , Feasibility Studies , Lipids , Administration, Inhalation
2.
Pharmaceutics ; 16(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543292

ABSTRACT

Designing spray-dried particles for inhalation aims at specific physicochemical properties including a respirable aerodynamic diameter and adequate powder dispersibility. Leucine, an amphiphilic amino acid, has been shown to aid in optimizing bulk powder properties. Mannitol, a model crystalline active and common bulking agent, was co-sprayed with leucine at several excipient ratios, ethanol/water ratios, and spray dryer outlet temperatures in order to experimentally probe the underlying particle formation mechanisms in this binary crystalline system. During the droplet drying of two crystallizing components, the material that nucleates first will preferentially enrich the surface. It is desired to have a completely crystalline leucine shell to improve powder properties, however, mannitol competes with leucine for the surface depending on excipient concentration and manufacturing parameters. The resulting particles were studied initially and at a two-month timepoint via solid state characterization, visual analysis, and particle size analysis in order to detect changes in bulk powder properties. It was determined that, similar to systems where only leucine can crystallize, initial leucine saturation in the formulation dictates powder characteristics.

3.
Pharmaceutics ; 15(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839756

ABSTRACT

Carrier-free spray-dried dispersions for pulmonary delivery, for which the demand is growing, frequently require the incorporation of dispersibility-enhancing excipients into the formulations to improve the efficacy of the dosage form. One of the most promising of such excipients, L-leucine, is expected to be approved for inhalation soon and has been studied exhaustively. However, during stability, small fibers protruding from the particles of leucine-containing powders have occasionally been observed. To clarify the origin of these fibers and assess their potential influence on the performance of the powders, three different classes of spray-dried leucine-containing formulation systems were studied over an 8-month accelerated stability program. These systems consisted of a large molecule biologic (bevacizumab) in conjunction with a glass former (trehalose), an amorphous small-molecular mass active (moxidectin), and a crystallizing active (mannitol). It was determined that the appearance of the fibers was due to the presence of small quantities of leucine in higher energy states, either because these were amorphous or present as a less stable crystalline polymorph. It was further shown that the growth of these leucine fibers caused no significant physicochemical instability in the powders. Nor, more importantly, did it decrease their aerosol performance in a dry powder inhaler or reduce the concentration of their active pharmaceutical ingredients.

4.
Eur J Pharm Biopharm ; 177: 308-322, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35905804

ABSTRACT

Administration of biologics such as proteins, vaccines, and phages via the respiratory route is becoming increasingly popular. Inhalable powder formulations for the successful delivery of biologics must first ensure both powder dispersibility and physicochemical stability. A lipid-based inhalable microparticle platform combining the stability advantages offered by dry powder formulations and high dispersibility afforded by a rugose morphology was spray dried and tested. A new simplified spray drying method requiring no organic solvents or complicated feedstock preparation processes was introduced for the manufacture of the microparticles. Trehalose was selected to form the amorphous particle core, because of its well-known ability to stabilize biologics, and also because of its ability to serve as a surrogate for small molecule actives. Phospholipid distearoyl phosphatidylcholine (DSPC), the lipid component in this formulation, was used as a shell former to improve powder dispersibility. Effectiveness of the lipid excipient in modifying trehalose particle morphology and enhancing powder dispersibility was evaluated at different lipid mass fractions (5%, 10%, 25%, 50%) and compared with that of several previously published shell-forming excipients at their effective mass fractions, i.e., 5% trileucine, 20% leucine, and 40% pullulan. A strong dependence of particle morphology on the lipid mass fraction was observed. Particles transitioned from typical smooth spherical trehalose particles without lipid to highly rugose microparticles at higher lipid mass fractions (>5%). In vitro aerosol performance testing demonstrated a significant improvement of powder dispersibility even at lipid mass fractions as low as 5%. Powder formulations with excellent aerosol performance comparable to those modified with leucine and trileucine were achieved at higher lipid mass fractions (>25%). A model biologic-containing formulation with 35% myoglobin, 35% glass stabilizer (trehalose), and 30% lipid shell former was shown to produce highly rugose particle structure as designed and excellent aerosol performance for efficient pulmonary delivery. A short-term stability at 40 °C proved that this protein-containing formulation had good thermal stability as designed. The results demonstrated great potential for the new lipid microparticle as a platform for the delivery of both small-molecule APIs and large-molecule biologics to the lung.


Subject(s)
Biological Products , Excipients , Administration, Inhalation , Aerosols/chemistry , Dry Powder Inhalers , Excipients/chemistry , Feasibility Studies , Leucine/chemistry , Lipids , Particle Size , Powders/chemistry , Trehalose/chemistry
5.
Pharm Res ; 39(4): 805-823, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35364777

ABSTRACT

PURPOSE: To develop a new lipid-based particle formulation platform for respiratory drug delivery applications. To find processing conditions for high surface rugosity and manufacturability. To assess the applicability of the new formulation method to different lipids. METHODS: A new spray drying method with a simplified aqueous suspension feedstock preparation process was developed for the manufacture of rugose lipid particles of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). A study covering a wide range of feedstock temperatures and outlet temperatures was conducted to optimize the processing conditions. Aerosol performance was characterized in vitro and in silico to assess the feasibility of their use in respiratory drug delivery applications. The applicability of the new spray drying method to longer-chain phospholipids with adjusted spray drying temperatures was also evaluated. RESULTS: Highly rugose DSPC lipid particles were produced via spray drying with good manufacturability. A feedstock temperature close to, and an outlet temperature lower than, the main phase transition were identified as critical in producing particles with highly rugose surface features. High emitted dose and total lung dose showed promising aerosol performance of the produced particles for use as a drug loading platform for respiratory drug delivery. Two types of longer-chain lipid particles with higher main phase transition temperatures, 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC) and 1,2-dibehenoyl-sn-glycero-3-phosphocholine (22:0 PC), yielded similar rugose morphologies when spray dried at correspondingly higher processing temperatures. CONCLUSIONS: Rugose lipid particles produced via spray drying from an aqueous suspension feedstock are promising as a formulation platform for respiratory drug delivery applications. The new technique can potentially produce rugose particles using various other lipids.


Subject(s)
Drug Delivery Systems , Phosphorylcholine , Administration, Inhalation , Aerosols , Particle Size , Phospholipids , Powders
6.
Int J Pharm ; 610: 121264, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34742827

ABSTRACT

Enteric infections have long constituted a silent epidemic responsible for hundreds of thousands of deaths around the world every year. Because of the global rise in antibiotic-resistant bacteria and the slow development of new small-molecule antibiotics, alternatives such as bacteriophage therapy have become a much sought-after option in the treatment of enteric infections. However, the administration of therapeutics through the oral route to target gastrointestinal infections poses challenges to dosage formulation because these active ingredients, particularly relatively fragile biological entities, require protection from the stomach's harsh acids. Encapsulation of the therapeutics within a pH-responsive coating capable of surviving low pH conditions has the potential to provide such protection. In this study, we developed a spray-dried powder vehicle capable of withstanding low pH comparable to stomach conditions, using Eudragit® S100 as a protective particle coating and trehalose as a stabilizing excipient for a possible active component. A particle formation model and a monodisperse droplet chain technique were initially used to study the formation process of Eudragit-trehalose composite microparticles at different ratios and in different ratios of water-ethanol solvent, which showed formation of particles with Eudragit shells varying in thickness from 0.13 µm to 0.75 µm. Promising Eudragit-trehalose formulations were subsequently spray-dried and their survival in acidic and alkaline environments studied using a new shadowgraphic imaging method. The results demonstrated that Eudragit was capable of creating a protective shell in the particles irrespective of the type of solvent used to prepare the formulations. The trehalose cores of particles with higher than 5% w/w of Eudragit remained protected after one hour of exposure at pH 2, indicating the potential of Eudragit-trehalose formulations for enteric delivery of drugs.


Subject(s)
Pharmaceutical Preparations , Trehalose , Feasibility Studies , Particle Size , Polymethacrylic Acids
7.
J Control Release ; 336: 522-536, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34229002

ABSTRACT

The formation of trileucine-containing spray-dried microparticles intended for pulmonary delivery was studied in depth. A single-particle method was employed to study the shell formation characteristics of trileucine in the presence of trehalose as a glass former, and an empirical correlation was proposed to predict the instance of shell formation. A droplet chain instrument was used to produce and collect monodisperse particles to examine morphology and calculate particle density for different levels of trileucine. It was observed that the addition of only 0.5 mg/mL (10% w/w) trileucine to a trehalose system could lower dried particle densities by approximately 1 g/cm3. In addition, a laboratory-scale spray dryer was used to produce batches of trileucine/trehalose powders in the respirable range. Raman spectroscopy demonstrated that both components were completely amorphous. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry were used to study the particle morphologies and surface compositions. For all cases with trileucine, highly rugose particles with trileucine coverages of more than 60% by mass were observed with trileucine feed fractions of as little as 2% w/w. Moreover, it was seen that at lower trileucine content, smaller and larger particles of a polydisperse powder had slightly different surface compositions. The surface activity of trileucine was also modeled via a modified form of the diffusion equation inside an evaporating droplet that took into account initial surface adsorption and eventual surface desorption due to droplet shrinkage. Finally, using the Flory-Huggins theory, it was estimated that at room temperature, liquid-liquid phase separation would start when the trileucine reached an aqueous concentration of about 18 mg/mL. Besides the surface activity of trileucine, this low concentration was assumed to explain the substantial effect of trileucine on the morphology of spray-dried particles due to early phase separation. The methodology proposed in this study can be used in the rational design of trileucine-containing microparticles.


Subject(s)
Oligopeptides , Administration, Inhalation , Aerosols , Particle Size , Powders
8.
Eur J Pharm Biopharm ; 163: 23-37, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33753213

ABSTRACT

Spray drying is a technique that can be used to stabilize biopharmaceuticals, such as vaccines, within dry particles. Compared to liquid pharmaceutical products, dry powder has the potential to reduce costs associated with refrigerated storage and transportation. In this study, spray drying was investigated for processing an adjuvanted tuberculosis subunit vaccine, formulated as an oil-in-water nanoemulsion, into a dry powder composed of microparticles. Applying in-silico approaches to the development of formulation and processing conditions, successful encapsulation of the adjuvanted vaccine within amorphous microparticles was achieved in only one iteration, with high retention (>90%) of both the antigen and adjuvant system. Moisture-controlled stability studies on the powder were conducted over 26 months at temperatures up to 40 °C. Results showed that the powder was physically stable after 26 months of storage for all tested temperatures. Adjuvant system integrity was maintained at temperatures up to 25 °C after 26 months and after one month of storage at 40 °C. The spray-dried product demonstrated improved antigen thermostability when stored above refrigerated temperatures as compared to the liquid product. These results demonstrate the feasibility of spray drying as a method of encapsulating and stabilizing an adjuvanted vaccine.


Subject(s)
Adjuvants, Immunologic/chemistry , Drug Compounding/methods , Spray Drying , Tuberculosis Vaccines/chemistry , Tuberculosis/prevention & control , Adjuvants, Immunologic/administration & dosage , Chemistry, Pharmaceutical , Drug Stability , Drug Storage , Emulsions , Excipients , Humans , Nanoparticles/chemistry , Particle Size , Powders , Tuberculosis Vaccines/administration & dosage , Vaccines, Subunit/administration & dosage
9.
Int J Pharm ; 592: 120102, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33227375

ABSTRACT

The particle formation of L-leucine, a dispersibility-enhancing amino acid used in the spray drying of inhalable pharmaceutical aerosols, was extensively studied using three experimental methods, and the results were interpreted with the aid of theory. A comparative-kinetics electrodynamic balance was used to study the shell formation behavior in single evaporating microdroplets containing leucine and trehalose. Different concentration thresholds of solidification and shell formation were determined for trehalose and leucine, which were then used in the particle formation model to predict the properties of spray-dried particles. Furthermore, a droplet chain instrument was used to study the particle morphologies and particle densities that were not accessible in the single particle experiments. Lab-scale spray drying was also used to produce powders typical for actual pharmaceutical applications. Raman spectroscopy confirmed that a glass former, such as trehalose, can inhibit the crystallization of leucine. The surface compositions of these spray-dried powders were analyzed via time-of-flight secondary ion mass spectrometry. The leucine surface coverage in a polydisperse powder was determined to be a function of the particle size or the initial droplet diameter of each respective particle. This observation confirms the important role of leucine crystallization kinetics in its shell-forming capabilities. A critical supersaturation ratio of 3.5 was also calculated for leucine, at which it is assumed to instantaneously nucleate out of solution. This ratio was used as the threshold for the initiation of crystallization. Crystallinity predictions for the leucine-trehalose particles based on this supersaturation ratio were in good agreement with the solid-state characterizations obtained by Raman spectroscopy. This study improves the fundamental understanding of the particle formation process of leucine-containing formulations, which can apply to other crystallizing systems and potentially facilitate the rational design of such formulations with reduced experimental effort.


Subject(s)
Spray Drying , Administration, Inhalation , Aerosols , Leucine , Particle Size , Powders
10.
Int J Pharm ; 593: 120121, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33278492

ABSTRACT

Protection against primarily respiratory infectious diseases, such as tuberculosis (TB), can likely be enhanced through mucosal immunization induced by direct delivery of vaccines to the nose or lungs. A thermostable inhalable dry powder vaccine offers further advantages, such as independence from the cold chain. In this study, we investigate the formulation for a stable, inhalable dry powder version of ID93 + GLA-SE, an adjuvanted subunit TB vaccine candidate, containing recombinant fusion protein ID93 and glucopyranosyl lipid A (GLA) in a squalene emulsion (SE) as an adjuvant system, via spray drying. The addition of leucine (20% w/w), pullulan (10%, 20% w/w), and trileucine (3%, 6% w/w) as dispersibility enhancers was investigated with trehalose as a stabilizing agent. Particle morphology and solid state, nanoemulsion droplet size, squalene and GLA content, ID93 presence, and aerosol performance were assessed for each formulation. The results showed that the addition of leucine improved aerosol performance, but increased aggregation of the emulsion droplets was demonstrated on reconstitution. Addition of pullulan preserved emulsion droplet size; however, the antigen could not be detected after reconstitution. The trehalose-trileucine excipient formulations successfully stabilized the adjuvant system, with evidence indicating retention of the antigen, in an inhalable dry powder format suitable for lung delivery.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Adjuvants, Immunologic , Administration, Inhalation , Aerosols , Excipients , Humans , Particle Size , Powders
11.
Pharm Res ; 36(7): 100, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31089892

ABSTRACT

PURPOSE: Evaporation and particle formation from multi-solvent microdroplets containing solid excipients pertaining to spray-drying of therapeutic agents intended for lung delivery were studied. Various water and ethanol co-solvent systems containing a variety of actives and excipients (beclomethasone, budesonide, leucine, and trehalose) were considered. METHODS: Numerical methods were used to predict the droplet evaporation rates and internal solute transfers, and their results verified and compared with results from two separate experimental setups. In particular, an electrodynamic balance was used to measure the evaporation rates of multicomponent droplets and a monodisperse droplet chain setup collected dried microparticles for further analytical investigations and ultramicroscopy. RESULTS: The numerical results are used to explain the different particle morphologies dried from solutions at different co-solvent compositions. The obtained numerical data clearly show that the two parameters controlling the general morphology of a dried particle, namely the Péclet number and the degree of saturation, can change with time in a multi-solvent droplet. This fact complicates product development for such systems. However, this additional complexity vanishes at what we define as the iso-compositional point, which occurs when the solvent ratios and other composition-dependent properties of the droplet remain constant during evaporation, similar to the azeotrope of such systems during distillation. CONCLUSIONS: Numerical and experimental analysis of multi-solvent systems indicate that spray-drying near the iso-compositional ratio simplifies the design and process development of such systems.


Subject(s)
Excipients/chemistry , Nebulizers and Vaporizers , Solvents/chemistry , Administration, Inhalation , Beclomethasone/chemistry , Budesonide/chemistry , Desiccation , Ethanol/chemistry , Kinetics , Leucine/chemistry , Powders/chemistry , Quantum Theory , Trehalose/chemistry , Water/chemistry
12.
Pharm Res ; 36(8): 111, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31144049

ABSTRACT

The Publisher regrets having introduced the following errors into the article when performing proof corrections.

13.
Int J Pharm ; 563: 156-168, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30951858

ABSTRACT

Spray drying biologics and small-molecule drugs can increase their thermal stability relative to liquid dosage forms and allow for widespread distribution to developing countries without cold chain infrastructure. In this study, pullulan trehalose powder is spray dried for inhalation. The powder is characterized in terms of manufacturability, physical stability, device compatibility, and aerosol performance. The manufacturability is demonstrated by reasonable spray drying yield and powder flowability. The powder has relatively low cohesiveness and high compressibility without semi-elastic deformation. Short-term physical stability for ambient temperature dry storage and 40 °C storage in commercial pressurized metered-dose inhaler propellants HFA 134a and HFA 227 is shown. A theoretical model predicts a high glass transition temperature near the surface of the microparticles where biologics are expected to reside. Emission from a commercial dry powder inhaler demonstrates high dispersibility, optimal size for inhalation, and adequate total lung dose, exceeding many commercial inhalation devices. The powder can be filled, stored, and actuated from a pressurized metered-dose inhaler without changes in particle morphology or solid phase. The pullulan trehalose platform thus appears promising for respiratory delivery.


Subject(s)
Glucans/chemistry , Trehalose/chemistry , Administration, Inhalation , Aerosol Propellants , Aerosols , Desiccation , Drug Stability , Dry Powder Inhalers , Hydrocarbons, Fluorinated , Metered Dose Inhalers , Powders , Transition Temperature , Vitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...