Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Immunol ; 12: 609029, 2021.
Article in English | MEDLINE | ID: mdl-33868229

ABSTRACT

Due to its richness in antigen presenting cells, e.g., dendritic cells (DC), the skin has been identified as a promising route for immunotherapy and vaccination. Several years ago, a skin delivery system was developed based on epicutaneous patches allowing the administration of antigen through intact skin. Using mouse models, we have shown that epicutaneous allergen application leads to a rapid uptake and transport of allergen-positive cells to skin-draining lymph nodes (LN). This occurred primarily in animals previously sensitized to the same allergen. In that context, we sought to better understand the role of the specific preexisting immunity in allergen capture by skin DC and their subsequent migration to LN. Specifically, we investigated the role of humoral immunity induced by sensitization and the involvement of IgG Fc receptors (FcγR). Epicutaneous patches containing fluorescently-labeled ovalbumin (OVA) were applied to naïve mice that had previously received either sera or purified IgG isolated from OVA-sensitized mice. To investigate the involvement of FcγR, animals received 2.4G2 (anti-FcγRII/RIII) blocking antibody, 24 hours before patch application. Mice that received sera or purified IgG originating from OVA-sensitized mice showed an increase in the quantity of OVA-positive DC in skin and LN. Moreover, the blockade of FcγR reduced the number of OVA-positive DC in LN to a level similar to that observed in naïve animals. Overall, these results demonstrate that preexisting specific-IgG antibodies are involved in allergen capture by skin DC following EPIT through the involvement of antigen-specific IgG-FcγR.


Subject(s)
Allergens/immunology , Cell Movement/immunology , Immunity, Humoral , Langerhans Cells/immunology , Lymph Nodes/immunology , Allergens/administration & dosage , Animals , Biomarkers , Disease Models, Animal , Hypersensitivity/immunology , Hypersensitivity/therapy , Immunization , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Immunophenotyping , Langerhans Cells/metabolism , Lymph Nodes/metabolism , Mice , Receptors, Fc/metabolism
2.
Allergy ; 76(4): 1213-1222, 2021 04.
Article in English | MEDLINE | ID: mdl-32996148

ABSTRACT

BACKGROUND: The prevalence of tree nut allergy has increased worldwide, and cashew has become one of the most common food allergens. More critically, cashew allergy is frequently associated with severe anaphylaxis. Despite the high medical need, no approved treatment is available and strict avoidance and preparedness for prompt treatment of allergic reactions are considered dual standard of care. In the meantime, Phase III study results suggest investigational epicutaneous immunotherapy (EPIT) may be a relevant and safe treatment for peanut allergy and may improve the quality of life for many peanut allergic children. OBJECTIVE: We aimed to evaluate the capacity of EPIT to provide protection against cashew-induced anaphylaxis in a relevant mouse model. METHODS: The efficacy of EPIT was evaluated by applying patches containing cashew allergens to cashew-sensitized mice. As negative control, sham mice received patches containing excipient. Following treatment, mice were challenged orally to cashew and anaphylactic symptoms, as well as plasmatic levels of mast-cell proteases (mMCP)-1/7, were quantified. RESULTS: Of 16 weeks of EPIT significantly protects against anaphylaxis by promoting a faster recovery of challenged mice. This protection was characterized by a significant reduction of temperature drop and clinical symptoms, 60 minutes after challenge. This was associated with a decrease in mast-cell reactivity as attested by the reduction of mMCP-1/7 in plasma, suggesting that EPIT specifically decrease IgE-mediated anaphylaxis. CONCLUSION: We demonstrate that EPIT markedly reduced IgE-mediated allergic reactions in a mouse model of cashew allergy, which suggests that EPIT may be a relevant approach to treating cashew allergy.


Subject(s)
Anacardium , Anaphylaxis , Allergens , Anaphylaxis/prevention & control , Animals , Arachis , Desensitization, Immunologic , Mice , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...