Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202400755, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972851

ABSTRACT

In pulsed laser deposition, along the traditionally exploited deposition on the front-side of the plasma-plume, a coating forms on the surface of the target as well. For reproducibility, this residue is usually cleaned and discarded. Here we instead investigate the target-side coated materials and employ them as a binder-free supercapacitor electrode. The ballistic-aggregated, target-side nanofoam is compact and features a larger fraction of sp2-carbon, higher nitrogen content with higher graphitic-N and lower oxygen content with fewer COOH groups than that of diffusive-aggregated conventional nanofoams. They are highly hydrogenated graphite-like amorphous carbon and superhydrophilic. The resulting symmetric micro-supercapacitor delivers higher volumetric capacitance of 522 mF/cm3 at 100 mV/s and 104% retention after 10000 charge-discharge cycles over conventional nanofoam (215 mF/cm3 and 85% retention) with an areal capacitance of 134 µF/cm2 at 120 Hz and ultrafast frequency response. Utilizing the normally discarded target-side material can therefore enable high performing devices while reducing waste, cost and energy input per usable product. leading towards a greater sustainability on nanomaterials synthesis and deposition techniques.

2.
EPJ Tech Instrum ; 10(1): 15, 2023.
Article in English | MEDLINE | ID: mdl-37304894

ABSTRACT

The interest in compact, cost-effective, and versatile accelerators is increasing for many applications of great societal relevance, ranging from nuclear medicine to agriculture, pollution control, and cultural heritage conservation. For instance, Particle Induced X-ray Emission (PIXE) is a non-destructive material characterization technique applied to environmental analysis that requires MeV-energy ions. In this context, superintense laser-driven ion sources represent a promising alternative to conventional accelerators. In particular, the optimization of the laser-target coupling by acting on target properties results in an enhancement of ion current and energy with reduced requirements on the laser system. Among the advanced target concepts that have been explored, one appealing option is given by double-layer targets (DLTs), where a very low-density layer, which acts as an enhanced laser absorber, is grown to a thin solid foil. Here we present some of the most recent results concerning the production with deposition techniques of advanced DLTs for laser-driven particle acceleration. We assess the potential of these targets for laser-driven ion acceleration with particle-in-cell simulations, as well as their application to PIXE analysis of aerosol samples with Monte Carlo simulations. Our investigation reports that MeV protons, accelerated with a ∼20 TW compact laser and optimized DLTs, can allow performing PIXE with comparable performances to conventional sources. We conclude that compact DLT-based laser-driven accelerators can be relevant for environmental monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...