Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(24): 9249-9257, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38903230

ABSTRACT

The protein dynamical transition marks an increase in atomic mobility and the onset of anharmonic motions at a critical temperature (T d), which is considered relevant for protein functionality. This phenomenon is ubiquitous, regardless of protein composition, structure and biological function and typically occurs at large protein content, to avoid water crystallization. Recently, a dynamical transition has also been reported in non-biological macromolecules, such as poly(N-isopropyl acrylamide) (PNIPAM) microgels, bearing many similarities to proteins. While the generality of this phenomenon is well-established, the role of water in the transition remains a subject of debate. In this study, we use atomistic molecular dynamics (MD) simulations and elastic incoherent neutron scattering (EINS) experiments with selective deuteration to investigate the microscopic origin of the dynamical transition and distinguish water and PNIPAM roles. While a standard analysis of EINS experiments would suggest that the dynamical transition occurs in PNIPAM and water at a similar temperature, simulations reveal a different perspective, also qualitatively supported by experiments. From room temperature down to about 180 K, PNIPAM exhibits only modest changes of dynamics, while water, being mainly hydration water under the probed extreme confinement, significantly slows down and undergoes a mode-coupling transition from diffusive to activated. Our findings therefore challenge the traditional view of the dynamical transition, demonstrating that it occurs in proximity of the water mode-coupling transition, shedding light on the intricate interplay between polymer and water dynamics.

2.
J Am Chem Soc ; 145(29): 16166-16175, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37432645

ABSTRACT

G-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations. The degree of multimerization and the strength of the stacking interaction are quantitatively determined in G4 self-assembled multimers. We show that self-assembly induces a significant polydispersity of the G4 multimers with an exponential distribution of contour lengths, consistent with a step-growth polymerization. On increasing DNA concentration, the strength of the stacking interaction between G4 monomers increases, as well as the average number of units in the aggregates. We utilized the same approach to explore the conformational flexibility of a model single-stranded long telomeric sequence. Our findings indicate that its G4 units frequently adopt a beads-on-a-string configuration. We also observe that the interaction between G4 units can be significantly affected by complexation with benchmark ligands. The proposed methodology, which identifies the determinants that govern the formation and structural flexibility of G4 multimers, may be an affordable tool aiding in the selection and design of drugs that target G4s under physiological conditions.


Subject(s)
DNA , G-Quadruplexes , Humans , Scattering, Small Angle , X-Ray Diffraction , DNA/chemistry , Telomere
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047038

ABSTRACT

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site. Individual monomers, however, have very low or no catalytic activity. As such, inhibition of Mpro can be achieved by molecules that target the substrate binding pocket to block catalytic activity or target the dimerization process. In this study, we investigated GC376, a transition-state analog inhibitor of the main protease of feline infectious peritonitis coronavirus, and Nirmatrelvir (NMV), an oral, bioavailable SARS-CoV-2 Mpro inhibitor with pan-human coronavirus antiviral activity. Our results show that both GC376 and NMV are capable of strongly binding to SARS-CoV-2 Mpro and altering the monomer-dimer equilibrium by stabilizing the dimeric state. This behavior is proposed to be related to a structured hydrogen-bond network established at the Mpro active site, where hydrogen bonds between Ser1' and Glu166/Phe140 are formed in addition to those achieved by the latter residues with GC376 or NMV.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
4.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901712

ABSTRACT

Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism and complexation on the G4 fast dynamics is mediated by hydration water.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Humans , Ligands , Water , Telomere
5.
Phys Chem Chem Phys ; 24(47): 29232-29240, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36445842

ABSTRACT

G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.


Subject(s)
Telomere , Humans
6.
Nanoscale Adv ; 2(5): 1869-1877, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132525

ABSTRACT

By combined use of wide-angle X-ray scattering, thermo-gravimetric analysis, inelastic neutron scattering, density functional theory and density functional theory molecular dynamics simulations, we investigate the structure, dynamics and stability of the water wetting-layer in single-walled aluminogermanate imogolite nanotubes (SW Ge-INTs): an archetypal system for synthetically controllable and monodisperse nano-reactors. We demonstrate that the water wetting-layer is strongly bound and solid-like up to 300 K under atmospheric pressure, with dynamics markedly different from that of bulk water. Atomic-scale characterisation of the wetting-layer reveals organisation of the H2O molecules in a curved triangular sublattice stabilised by the formation of three H-bonds to the nanotube's inner surface, with covalent interactions sufficiently strong to promote energetically favourable decoupling of the H2O molecules in the adlayer. The evidenced changes in the local composition, structure, electrostatics and dynamics of the Ge-INT's inner surface upon the formation of the solid wetting-layer demonstrate solvent-mediated functionalisation of the nanotube's cavity at room temperature and pressure, suggesting new strategies for the design of nano-rectors towards potential control of chemical reactivity in nano-confined volumes.

7.
J Phys Chem Lett ; 10(4): 870-876, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30735054

ABSTRACT

The long debated protein dynamical transition was recently found also in nonbiological macromolecules, such as poly- N-isopropylacrylamide (PNIPAM) microgels. Here, by using atomistic molecular dynamics simulations, we report a description of the molecular origin of the dynamical transition in these systems. We show that PNIPAM and water dynamics below the dynamical transition temperature T d are dominated by methyl group rotations and hydrogen bonding, respectively. By comparing with bulk water, we unambiguously identify PNIPAM-water hydrogen bonding as mainly responsible for the occurrence of the transition. The observed phenomenology thus crucially depends on the water-macromolecule coupling, being relevant to a wide class of hydrated systems, independently from the biological function.

8.
Sci Adv ; 4(9): eaat5895, 2018 09.
Article in English | MEDLINE | ID: mdl-30276264

ABSTRACT

A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a "protein-like" dynamical transition in nonbiological aqueous environments. To this aim, we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Owing to the heterogeneous architecture of the microgels, water crystallization is avoided in concentrated samples, allowing us to monitor atomic dynamics at low temperatures. By elastic incoherent neutron scattering and molecular dynamics simulations, we find that a dynamical transition occurs at a temperature T d ~ 250 K, independently from PNIPAM mass fraction. However, the transition is smeared out on approaching dry conditions. The quantitative agreement between experiments and simulations provides evidence that the transition occurs simultaneously for PNIPAM and water dynamics. The similarity of these results with hydrated protein powders suggests that the dynamical transition is a generic feature in complex macromolecular systems, independently from their biological function.

10.
Biophys J ; 112(5): 933-942, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28297652

ABSTRACT

Nearly all protein functions require structural change, such as enzymes clamping onto substrates, and ion channels opening and closing. These motions are a target for possible new therapies; however, the control mechanisms are under debate. Calculations have indicated protein vibrations enable structural change. However, previous measurements found these vibrations only weakly depend on the functional state. By using the novel technique of anisotropic terahertz microscopy, we find that there is a dramatic change to the vibrational directionality with inhibitor binding to lysozyme, whereas the vibrational energy distribution, as measured by neutron inelastic scattering, is only slightly altered. The anisotropic terahertz measurements provide unique access to the directionality of the intramolecular vibrations, and immediately resolve the inconsistency between calculations and previous measurements, which were only sensitive to the energy distribution. The biological importance of the vibrational directions versus the energy distribution is revealed by our calculations comparing wild-type lysozyme with a higher catalytic rate double deletion mutant. The vibrational energy distribution is identical, but the more efficient mutant shows an obvious reorientation of motions. These results show that it is essential to characterize the directionality of motion to understand and control protein dynamics to optimize or inhibit function.


Subject(s)
Movement , Muramidase/metabolism , Vibration , Entropy , Molecular Dynamics Simulation , Muramidase/chemistry , Protein Conformation
11.
Article in English | MEDLINE | ID: mdl-26274166

ABSTRACT

We have measured the dynamic structure factor of liquid para-hydrogen mixed with normal deuterium (T=20 K) at two different concentration levels using incoherent inelastic neutron scattering. This choice has been made since the presence of D(2} modifies the self-dynamics of H(2) in a highly nontrivial way, acting both on its pseudophononic and its diffusive parts in a tunable way. After an accurate data reduction, recorded neutron spectra were studied through the modified Young and Koppel model and the H(2) center-of-mass self-dynamics structure factor was finally extracted for the two mixtures. Some physical quantities (i.e., self-diffusion coefficient and mean kinetic energy) were determined and compared with accurate quantum calculations, which, in addition, also provided estimates of the velocity autocorrelation function for the H(2) centers of mass. These estimates, in conjunction with the Gaussian approximation, were used to simulate the H(2) center-of-mass self-dynamics structure factor in the same range as the experimental one. The agreement between measured and calculated spectra was globally good, but some discrepancies proved the unquestionable breakdown of the Gaussian approximation in these semiquantum systems at a level comparable to that already observed in pure liquid para-hydrogen.

12.
Nat Commun ; 6: 6490, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25774711

ABSTRACT

Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Proteins/chemistry , Water/chemistry , Binding Sites , Computer Simulation , Diffusion , Humans , Maltose-Binding Proteins/chemistry , Molecular Dynamics Simulation , Motion , Neutron Diffraction , Neutrons , Protein Conformation , Protein Folding , Scattering, Radiation , Temperature , tau Proteins/chemistry
13.
Nano Lett ; 13(4): 1751-6, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23517435

ABSTRACT

We present in situ monitoring of water filling of single-walled carbon nanotubes at room temperature, using X-ray scattering. A systematic method is developed to determine the water radial density profile. Water filling is homogeneous below about 5% in mass, whereas it structures into three layers above. These results should motivate further theoretical and simulations studies and allow getting a better understanding of the very peculiar properties of water confined in hydrophobic environment.


Subject(s)
Nanotubes, Carbon/chemistry , Water/chemistry , Computer Simulation , Hydrophobic and Hydrophilic Interactions , Spectrometry, X-Ray Emission
14.
J Phys Chem B ; 117(7): 2026-31, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23294006

ABSTRACT

The coherent excitations of DNA hydration water at 100 K have been investigated by neutron scattering spectroscopy to extract the excess signal of D(2)O-hydrated DNA with respect to dry DNA samples. A structural characterization of the sample, through the analysis of the static structure factor, has suggested that DNA hydration water is largely in an amorphous state up to high hydration degree, with only a small contribution coming from slightly deformed crystalline ice. To describe the inelastic spectra of DNA hydration water, we exploited a phenomenological model already applied in similar disordered systems, such as bulk water (Sacchetti et al. Phys. Rev. E2004, 69, 061203; Petrillo et al. Phys. Rev. E2000, 62, 3611-3618; Sette et al. Phys. Rev. Lett.1996, 77, 83-86) and protein hydration water (Orecchini et al. J. Am. Chem. Soc.2009, 131, 4664-4669). Over the low-energy range, the coherent dynamics of DNA hydration water is characterized by a branch at about 7.5 meV, a value slightly larger than that of bulk water. An additional mode in the energy range 20-35 meV is found, with a wavevector dependence seemingly connected with the structural features of amorphous ice. The ensemble of the results supports the glassy nature of DNA hydration water.


Subject(s)
DNA/chemistry , Water/chemistry , Neutron Diffraction , Scattering, Small Angle , Temperature
15.
J Phys Chem B ; 116(12): 3861-5, 2012 Mar 29.
Article in English | MEDLINE | ID: mdl-22372685

ABSTRACT

The coherent density fluctuations of a perdeuterated dry protein have been studied by Brillouin neutron spectroscopy. Besides a nearly wavevector-independent branch located around 5 meV, a propagating mode with a linear trend at low wavevector Q is revealed. The corresponding speed of 3780 ± 130 m/s is definitely higher than that of hydrated proteins. Above Q = 0.8 Å(-1), this mode becomes overdamped, with lifetimes shorter than 0.1 ps, in fashion similar to glassy materials. The present results indicate that dry proteins sustain coherent density fluctuations in the THz frequency regime. The trend of the longitudinal modulus indicates that in this frequency range dry biomolecules are more rigid than hydrated proteins.


Subject(s)
Proteins/chemistry , Neutrons , Spectrum Analysis , Vibration , Water/chemistry
16.
J Chem Phys ; 135(2): 025101, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21766968

ABSTRACT

The coherent density fluctuations propagating through DNA hydration water were studied by neutron scattering spectroscopy. Two collective modes were found to be sustained by the aqueous solvent: a propagating excitation, characterised by a speed of about 3500 m/s, and another one placed at about 6 meV. These results globally agree with those previously found for the coherent excitations in bulk water, although in DNA hydration water the speed of propagating modes is definitely higher than that of the pure solvent. The short-wavelength collective excitations of DNA hydration water are reminiscent of those observed in protein hydration water and in the amorphous forms of ice.


Subject(s)
DNA/chemistry , Water/chemistry , Animals , Neutron Diffraction , Salmon
17.
J Phys Chem B ; 114(50): 16713-7, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21114328

ABSTRACT

We present a quasielastic neutron scattering (QENS) study of single-particle dynamics in pure water, measured at temperatures between 256 and 293 K along an isobaric path at 200 MPa. A thorough analysis of the spectral line shapes reveals a departure from simple models of continuous or jump diffusion, with such an effect becoming stronger at lower temperatures. We show that such a diverging trend of dynamical quantities upon cooling closely resembles the divergent (anomalous) compressibility observed in water by small-angle diffraction. Such an analogy suggests an interesting interplay between single-particle diffusion and structural arrangements in liquid water, both bearing witness of the well-known water anomalies. In particular, a fit of dynamical parameters by a Vogel-Tammann-Fulcher law provides a critical temperature of about 220 K, interestingly close to the hypothesized position of the second critical point of water and to the so-called Widom line.

18.
J Am Chem Soc ; 131(13): 4664-9, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19284757

ABSTRACT

By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.


Subject(s)
Ribonuclease, Pancreatic/chemistry , Spectrum Analysis/methods , Water/chemistry , Computer Simulation , Models, Molecular , Molecular Structure , Neutrons
SELECTION OF CITATIONS
SEARCH DETAIL
...