Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 310, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662130

ABSTRACT

Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.


Subject(s)
Halomonas , Hydroxybutyrates , Nitrogen , Polyesters , Polyhydroxybutyrates , Halomonas/metabolism , Halomonas/genetics , Halomonas/growth & development , Nitrogen/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Metabolic Networks and Pathways/genetics , Biomass , Glucose/metabolism
2.
Front Med (Lausanne) ; 11: 1337785, 2024.
Article in English | MEDLINE | ID: mdl-38435393

ABSTRACT

Purpose: Essential oils from various plants have diverse therapeutic properties and are researched extensively. They have applications in medicine, aromatherapy, microbiology, agriculture, livestock, and the food industry, benefiting the population. Methods: This systematic review followed the PRISMA verification protocol. The study focused on the anti-inflammatory effects, nutraceutical properties, antioxidant and antibacterial activity of essential oils in lemon, orange, cumin, cinnamon, coriander, rosemary, thyme, and parsley. We also looked at their presence in the diet, their effect, their mechanism of action on health, and the most important active compounds. The search was conducted in the PubMed database for the last 12 years of publications, including in vitro, in vivo, and online cell model tests. Results: Essential oils have been shown to have multiple health benefits, primarily due to their antimicrobial and anti-inflammatory effects. The mechanism of action of cinnamon oil alters bacterial membranes, modifies lipid profiles, and inhibits cell division, giving a potential benefit in protection against colitis. On the other hand, a significant improvement was observed in the diastolic pressure of patients with metabolic syndrome when supplementing them with cumin essential oil. The antimicrobial properties of coriander essential oil, especially its application in seafood like tilapia, demonstrate efficacy in improving health and resistance to bacterial infections. Cumin essential oil treats inflammation. Parsley essential oil is an antioxidant. Orange peel oil is antibacterial, antifungal, antiparasitic, and pro-oxidative. Lemon essential oil affects mouse intestinal microbiota. Thyme essential oil protects the colon against damage and DNA methylation. Carnosic acid in rosemary oil can reduce prostate cancer cell viability by modifying the endoplasmic reticulum function. Conclusion and discussion: Essential oils have many therapeutic and antiparasitic properties. They are beneficial to human health in many ways. However, to understand their potential benefits, more research is needed regarding essential oils such as coriander, parsley, rosemary, cumin, and thyme. These research gaps are relevant since they restrict understanding of the possible benefits of these crucial oils for health-related contexts.

3.
Biotechnol Bioeng ; 118(1): 481-490, 2021 01.
Article in English | MEDLINE | ID: mdl-32865815

ABSTRACT

Chinese hamster ovary (CHO) cells are widely used in biopharmaceutical production. Improvements to cell lines and bioprocesses are constantly being explored. One of the major limitations of CHO cell culture is that the cells undergo apoptosis, leading to rapid cell death, which impedes reaching high recombinant protein titres. While several genetic engineering strategies have been successfully employed to reduce apoptosis, there is still room to further enhance CHO cell lines performance. 'Omics analysis is a powerful tool to better understand different phenotypes and for the identification of gene targets for engineering. Here, we present a comprehensive review of previous CHO 'omics studies that revealed changes in the expression of apoptosis-related genes. We highlight targets for genetic engineering that have reduced, or have the potential to reduce, apoptosis or to increase cell proliferation in CHO cells, with the final aim of increasing productivity.


Subject(s)
Apoptosis , Cell Proliferation , Proteomics , Animals , CHO Cells , Cricetulus , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
4.
J Ind Microbiol Biotechnol ; 47(12): 1059-1073, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33175241

ABSTRACT

Tetanus is a fatal disease caused by Clostridium tetani infections. To prevent infections, a toxoid vaccine, developed almost a century ago, is routinely used in humans and animals. The vaccine is listed in the World Health Organisation list of Essential Medicines and can be produced and administered very cheaply in the developing world for less than one US Dollar per dose. Recent developments in both analytical tools and frameworks for systems biology provide industry with an opportunity to gain a deeper understanding of the parameters that determine C. tetani virulence and physiological behaviour in bioreactors. Here, we compared a traditional fermentation process with a fermentation medium supplemented with five heavily consumed amino acids. The experiment demonstrated that amino acid catabolism plays a key role in the virulence of C. tetani. The addition of the five amino acids favoured growth, decreased toxin production and changed C. tetani morphology. Using time-course transcriptomics, we created a "fermentation map", which shows that the tetanus toxin transcriptional regulator BotR, P21 and the tetanus toxin gene was downregulated. Moreover, this in-depth analysis revealed potential genes that might be involved in C. tetani virulence regulation. We observed differential expression of genes related to cell separation, surface/cell adhesion, pyrimidine biosynthesis and salvage, flagellar motility, and prophage genes. Overall, the fermentation map shows that, mediated by free amino acid concentrations, virulence in C. tetani is regulated at the transcriptional level and affects a plethora of metabolic functions.


Subject(s)
Amino Acids , Clostridium tetani , Amino Acids/metabolism , Animals , Clostridium tetani/genetics , Clostridium tetani/metabolism , Clostridium tetani/pathogenicity , Humans , Tetanus Toxin/biosynthesis , Tetanus Toxin/genetics , Transcriptome
5.
Psychiatry Res Neuroimaging ; 302: 111099, 2020 08 30.
Article in English | MEDLINE | ID: mdl-32505903

ABSTRACT

Cholinergic dysfunction is central in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). The electroencephalography-based acetylcholine index (EEG-Ach index) has been proposed as a biomarker of cholinergic dysfunction. However, it is unclear how the EEG-Ach index relates to amyloid-beta pathology and neurodegeneration. We investigated the association between the EEG-Ach index and cerebrospinal fluid (CSF) amyloid-beta, CSF total tau, cortical thickness, and hippocampal volume from magnetic resonance imaging (MRI), and cognition. A total of 127 patients with different neurodegenerative diseases were studied. The EEG-Ach index was calculated from quantitative EEG using statistical pattern recognition. The EEG-Ach index was associated with hippocampal volume and cortical thickness in frontal, temporal, and occipital cortices. Cross-sectional sub-analyses based on a small sample suggests that the EEG-Ach index increases the closest to AD dementia, downstream to amyloid-beta pathology, CSF total tau, and hippocampal volume. We conclude that cholinergic dysfunction correlates with atrophy in brain areas important for AD pathogenesis, and this association is more prominent in the dementia stage. These results together with previous studies from this project suggest that the EEG-Ach index may be a useful biomarker for cholinergic dysfunction, with value for differential diagnosis of dementia and monitoring patients at the dementia stage.


Subject(s)
Alzheimer Disease/physiopathology , Cerebral Cortex/diagnostic imaging , Electroencephalography , Hippocampus/diagnostic imaging , Lewy Body Disease/physiopathology , Acetylcholine , Aged , Aged, 80 and over , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Atrophy , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/pathology , Cerebral Cortex/pathology , Cholinergic Antagonists , Cognition , Cross-Sectional Studies , Diagnosis, Differential , Female , Hippocampus/pathology , Humans , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Magnetic Resonance Imaging , Male , Mental Status and Dementia Tests , Middle Aged , Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Organ Size , Scopolamine , tau Proteins/cerebrospinal fluid
6.
Biotechnol Bioeng ; 117(4): 1187-1203, 2020 04.
Article in English | MEDLINE | ID: mdl-31930480

ABSTRACT

Chinese hamster ovary (CHO) cells are the predominant host cell line for the production of biopharmaceuticals, a growing industry currently worth more than $188 billion USD in global sales. CHO cells undergo programmed cell death (apoptosis) following different stresses encountered in cell culture, such as substrate limitation, accumulation of toxic by-products, and mechanical shear, hindering production. Genetic engineering strategies to reduce apoptosis in CHO cells have been investigated with mixed results. In this review, a contemporary understanding of the real complexity of apoptotic mechanisms and signaling pathways is described; followed by an overview of antiapoptotic cell line engineering strategies tested so far in CHO cells.


Subject(s)
Apoptosis , Biological Products/metabolism , CHO Cells , Cell Engineering , Animals , Cell Culture Techniques , Cricetinae , Cricetulus
7.
Toxins (Basel) ; 11(9)2019 09 11.
Article in English | MEDLINE | ID: mdl-31514424

ABSTRACT

Clostridium is a broad genus of anaerobic, spore-forming, rod-shaped, Gram-positive bacteria that can be found in different environments all around the world. The genus includes human and animal pathogens that produce potent exotoxins that cause rapid and potentially fatal diseases responsible for countless human casualties and billion-dollar annual loss to the agricultural sector. Diseases include botulism, tetanus, enterotoxemia, gas gangrene, necrotic enteritis, pseudomembranous colitis, blackleg, and black disease, which are caused by pathogenic Clostridium. Due to their ability to sporulate, they cannot be eradicated from the environment. As such, immunization with toxoid or bacterin-toxoid vaccines is the only protective method against infection. Toxins recovered from Clostridium cultures are inactivated to form toxoids, which are then formulated into multivalent vaccines. This review discusses the toxins, diseases, and toxoid production processes of the most common pathogenic Clostridium species, including Clostridiumbotulinum, Clostridiumtetani, Clostridiumperfringens, Clostridiumchauvoei, Clostridiumsepticum, Clostridiumnovyi and Clostridiumhemolyticum.


Subject(s)
Bacterial Vaccines/therapeutic use , Clostridium Infections/prevention & control , Clostridium , Animals , Bacterial Toxins , Humans
8.
Genome Biol Evol ; 11(7): 2035-2044, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31076745

ABSTRACT

Clostridium is a large genus of obligate anaerobes belonging to the Firmicutes phylum of bacteria, most of which have a Gram-positive cell wall structure. The genus includes significant human and animal pathogens, causative of potentially deadly diseases such as tetanus and botulism. Despite their relevance and many studies suggesting that they are not a monophyletic group, the taxonomy of the group has largely been neglected. Currently, species belonging to the genus are placed in the unnatural order defined as Clostridiales, which includes the class Clostridia. Here, we used genomic data from 779 strains to study the taxonomy and evolution of the group. This analysis allowed us to 1) confirm that the group is composed of more than one genus, 2) detect major differences between pathogens classified as a single species within the group of authentic Clostridium spp. (sensu stricto), 3) identify inconsistencies between taxonomy and toxin evolution that reflect on the pervasive misclassification of strains, and 4) identify differential traits within central metabolism of members of what has been defined earlier and confirmed by us as cluster I. Our analysis shows that the current taxonomic classification of Clostridium species hinders the prediction of functions and traits, suggests a new classification for this fascinating class of bacteria, and highlights the importance of phylogenomics for taxonomic studies.


Subject(s)
Clostridium/genetics , DNA, Bacterial/genetics , Phylogeny
9.
Biotechnol J ; 13(3): e1700231, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29316330

ABSTRACT

The development of next-generation sequencing technologies has opened new opportunities to better characterize complex eukaryotic cells. Chinese hamster ovary (CHO) cells play a primary role in therapeutic protein production, with currently five of the top ten blockbuster drugs produced in CHO. However, engineering superior CHO cells with improved production features has had limited success to date and cell lines are still developed through the generation and screening of large strain pools. Here, we applied RNA sequencing to contrast a high and a low monoclonal antibody producing cell line. Rigorous experimental design achieved high reproducibility between biological replicates, remarkably reducing variation to less than 10%. More than 14 000 gene-transcripts are identified and surprisingly 58% are classified as differentially expressed, including 2900 with a fold change higher than 1.5. The largest differences are found for gene-transcripts belonging to regulation of apoptosis, cell death, and protein intracellular transport GO term classifications, which are found to be significantly enriched in the high producing cell line. RNA sequencing is also performed on subclones, where down-regulation of genes encoding secreted glycoproteins is found to be the most significant change. The large number of significant differences even between subclones challenges the notion of identifying and manipulating a few key genes to generate high production CHO cell lines.


Subject(s)
Antibodies, Monoclonal/biosynthesis , CHO Cells , Clonal Evolution/genetics , High-Throughput Nucleotide Sequencing , Animals , Cell Lineage/genetics , Cricetulus
10.
Biotechnol Bioeng ; 114(8): 1825-1836, 2017 08.
Article in English | MEDLINE | ID: mdl-28436007

ABSTRACT

For decades, Chinese hamster ovary (CHO) cells have been the preferred host for therapeutic monoclonal antibody (mAb) production; however, increasing mAb titer by rational engineering remains a challenge. Our previous proteomic analysis in CHO cells suggested that a higher content of glutathione (GSH) might be related to higher productivity. GSH is an important antioxidant, cell detoxifier, and is required to ensure the formation of native disulfide bonds in proteins. To investigate the involvement of GSH in mAb production, we generated stable CHO cell lines overexpressing genes involved in the first step of GSH synthesis; namely the glutamate-cysteine ligase catalytic subunit (Gclc) and the glutamate-cysteine ligase modifier subunit (Gclm). The two genes were reconstructed from our RNA-Seq de novo assembly and then were functionally annotated. Once the sequences of the genes were confirmed using proteogenomics, a transiently expressed mAb was introduced into cell lines overexpressing either Gclc or Gclm. The new cell lines were compared for mAb production to the parental cell line and changes at the proteome level were measured using SWATH. As per our previous proteomics observations, overexpressing Gclm improved productivity, titer, and the frequency of high producer clones by 70%. In contrast, overexpressing Gclc, which produced a higher amount of GSH, did not increase mAb production. We show that GSH cannot be linked to higher productivity and that Gclm may be controlling other cellular processes involved in mAb production yet to be elucidated. Biotechnol. Bioeng. 2017;114: 1825-1836. © 2017 Wiley Periodicals, Inc.


Subject(s)
Antibodies, Monoclonal/biosynthesis , CHO Cells/physiology , Genetic Enhancement/methods , Glutamate-Cysteine Ligase/metabolism , Protein Engineering/methods , Up-Regulation/physiology , Animals , Antibodies, Monoclonal/genetics , CHO Cells/cytology , Catalysis , Cricetulus , Glutamate-Cysteine Ligase/genetics , Protein Subunits
11.
Cell Syst ; 3(5): 434-443.e8, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27883890

ABSTRACT

Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.


Subject(s)
Genome , Animals , CHO Cells , Consensus , Cricetinae , Cricetulus , Humans , Metabolic Networks and Pathways , Recombinant Proteins
12.
Front Plant Sci ; 7: 1138, 2016.
Article in English | MEDLINE | ID: mdl-27559337

ABSTRACT

The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated that this systems approach is powerful enough to complement the functional metabolic annotation of bioenergy grasses.

13.
Metabolomics ; 12: 109, 2016.
Article in English | MEDLINE | ID: mdl-27358602

ABSTRACT

INTRODUCTION: The human genome-scale metabolic reconstruction details all known metabolic reactions occurring in humans, and thereby holds substantial promise for studying complex diseases and phenotypes. Capturing the whole human metabolic reconstruction is an on-going task and since the last community effort generated a consensus reconstruction, several updates have been developed. OBJECTIVES: We report a new consensus version, Recon 2.2, which integrates various alternative versions with significant additional updates. In addition to re-establishing a consensus reconstruction, further key objectives included providing more comprehensive annotation of metabolites and genes, ensuring full mass and charge balance in all reactions, and developing a model that correctly predicts ATP production on a range of carbon sources. METHODS: Recon 2.2 has been developed through a combination of manual curation and automated error checking. Specific and significant manual updates include a respecification of fatty acid metabolism, oxidative phosphorylation and a coupling of the electron transport chain to ATP synthase activity. All metabolites have definitive chemical formulae and charges specified, and these are used to ensure full mass and charge reaction balancing through an automated linear programming approach. Additionally, improved integration with transcriptomics and proteomics data has been facilitated with the updated curation of relationships between genes, proteins and reactions. RESULTS: Recon 2.2 now represents the most predictive model of human metabolism to date as demonstrated here. Extensive manual curation has increased the reconstruction size to 5324 metabolites, 7785 reactions and 1675 associated genes, which now are mapped to a single standard. The focus upon mass and charge balancing of all reactions, along with better representation of energy generation, has produced a flux model that correctly predicts ATP yield on different carbon sources. CONCLUSION: Through these updates we have achieved the most complete and best annotated consensus human metabolic reconstruction available, thereby increasing the ability of this resource to provide novel insights into normal and disease states in human. The model is freely available from the Biomodels database (http://identifiers.org/biomodels.db/MODEL1603150001).

14.
Neurodegener Dis ; 16(1-2): 77-86, 2016.
Article in English | MEDLINE | ID: mdl-26726737

ABSTRACT

BACKGROUND: Global brain atrophy is present in normal aging and different neurodegenerative disorders such as Alzheimer's disease (AD) and is becoming widely used to monitor disease progression. SUMMARY: The brain volume/cerebrospinal fluid index (BV/CSF index) is validated in this study as a measurement of global brain atrophy. We tested the ability of the BV/CSF index to detect global brain atrophy, investigated the influence of confounders, provided normative values and cut-offs for mild, moderate and severe brain atrophy, and studied associations with different outcome variables. A total of 1,009 individuals were included [324 healthy controls, 408 patients with mild cognitive impairment (MCI) and 277 patients with AD]. Magnetic resonance images were segmented using FreeSurfer, and the BV/CSF index was calculated and studied both cross-sectionally and longitudinally (1-year follow-up). Both AD patients and MCI patients who progressed to AD showed greater global brain atrophy compared to stable MCI patients and controls. Atrophy was associated with older age, larger intracranial volume, less education and presence of the ApoE ε4 allele. Significant correlations were found with clinical variables, CSF biomarkers and several cognitive tests. KEY MESSAGES: The BV/CSF index may be useful for staging individuals according to the degree of global brain atrophy, and for monitoring disease progression. It also shows potential for predicting clinical changes and for being used in the clinical routine.


Subject(s)
Brain Diseases/diagnosis , Brain Diseases/pathology , Brain/pathology , Cerebrospinal Fluid , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aged , Aging/genetics , Aging/pathology , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Atrophy , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Educational Status , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Organ Size , Reference Values , Severity of Illness Index
15.
J Proteome Res ; 14(2): 609-18, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25495469

ABSTRACT

Chinese hamster ovary (CHO) cells are the preferred production host for therapeutic monoclonal antibodies (mAb) due to their ability to perform post-translational modifications and their successful approval history. The completion of the genome sequence for CHO cells has reignited interest in using quantitative proteomics to identify markers of good production lines. Here we applied two different proteomic techniques, iTRAQ and SWATH, for the identification of expression differences between a high- and low-antibody-producing CHO cell lines derived from the same transfection. More than 2000 proteins were quantified with 70 of them classified as differentially expressed in both techniques. Two biological processes were identified as differentially regulated by both methods: up-regulation of glutathione biosynthesis and down-regulation of DNA replication. Metabolomic analysis confirmed that the high producing cell line displayed higher intracellular levels of glutathione. SWATH further identified up-regulation of actin filament processes and intracellular transport and down regulation of several growth-related processes. These processes may be important for conferring high mAb production and as such are promising candidates for targeted engineering of high-expression cell lines.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Glutathione/biosynthesis , Ovary/immunology , Up-Regulation , Animals , CHO Cells , Cricetinae , Cricetulus , Female , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...