Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38543581

ABSTRACT

In this study, bacterial isolates C1-4-7, D2-4-6, and M1-4-11 from Antarctic soil were phenotypically and genotypically characterized, and their antibacterial spectrum and that of cell-free culture supernatant were investigated. Finally, the effect of temperature and culture medium on the production of antimicrobial compounds was investigated. The three bacteria were identified as different strains of the genus Pseudomonas. The three bacteria were multi-drug resistant to antibiotics. They exhibited different patterns of growth inhibition of pathogenic bacteria. M1-4-11 was remarkable for inhibiting the entire set of pathogenic bacteria tested. All three bacteria demonstrated optimal production of antimicrobial compounds at 15 °C and 18 °C. Among the culture media studied, Nutrient broth would be the most suitable to promote the production of antimicrobial compounds. The thermostability exhibited by the antimicrobial molecules secreted, their size of less than 10 kDa, and their protein nature would indicate that these molecules are bacteriocin-like compounds.

2.
Int. j. morphol ; 41(1): 286-296, feb. 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1430539

ABSTRACT

SUMMARY: Cancer is the second leading cause of death in the world and colorectal cancer is the only cancer that has shown a sustained increase in mortality in the last decade. In the search for new chemotherapeutic agents against cancer, extremophilic microorganisms have shown to be a potential source to obtain molecules of natural origin and with selective cytotoxic action towards cancer cells. In this work we analyzed the ability of a collection of Antarctic soil bacteria, isolated on Collins Glacier from the rhizosphere of Deschampsia antarctica Desv plant, to secrete molecules capable of inhibiting cell proliferation of a colorectal cancer tumor line. Our results demonstrated that culture supernatants from the Antarctic bacteria K2I17 and MI12 decreased the viability of LoVo cells, a colorectal adenocarcinoma cell line. Phenotypic and genotypic characterization of the Antarctic bacteria showed that they were taxonomically related and nucleotide identity analysis based on the 16S rRNA gene sequence identified the bacterium K2I17 as a species belonging to the genus Bacillus.


El cáncer es la segunda causa de muerte en el mundo y el cáncer colorrectal es el único que presenta un aumento sostenido de la mortalidad en la última década. En la búsqueda de nuevos agentes quimioterapeúticos contra el cáncer, se ha propuesto a los microorganismos extremófilos como una fuente potencial para obtener moléculas de origen natural y con acción citotóxica selectiva hacia las células cancerígenas. En este trabajo analizamos la capacidad de una colección de bacterias de suelo antártico, aisladas en el glaciar Collins desde rizosfera de la planta de Deschampsia antarctica Desv, de secretar moléculas capaces de inhibir la proliferación celular de una línea tumoral de cáncer colorrectal. Nuestros resultados demostraron que los sobrenadantes de cultivo de las bacterias antárticas K2I17 y MI12 disminuyeron la viabilidad de la línea celular de adenocarcinoma colorrectal LoVo, en un ensayo de reducción metabólica de MTT. La caracterización fenotípica y genotípica de las bacterias antárticas, demostró que estaban relacionadas taxonómicamente y el análisis de la identidad nucleotídica en base a la secuencia del gen ARNr 16S identificó a la bacteria K2I17 como una especie perteneciente al género Bacillus.


Subject(s)
Humans , Soil Microbiology , Bacillus/physiology , Colorectal Neoplasms/drug therapy , Cell Proliferation/drug effects , Phenotype , Bacillus/isolation & purification , Bacillus/genetics , In Vitro Techniques , RNA, Ribosomal, 16S , Adenocarcinoma/drug therapy , Cell Survival/drug effects , Polymerase Chain Reaction , Cell Line, Tumor/drug effects , Genotype , Antarctic Regions
3.
Article in English | MEDLINE | ID: mdl-35886632

ABSTRACT

Background: Little is known about the interaction between the nasopharyngeal bacterial profile and the nutritional status in children. In this study, our main goal was to evaluate the associations between overnutrition and the presence of four potentially pathogenic bacteria in the nasopharynx of infants with viral lower respiratory tract infections (LRTI). In addition, we determined whether changes in the nasopharyngeal bacterial profile were associated with mucosal and serum proinflammatory cytokines and with clinical disease severity. Methods: We enrolled 116 children less than 2 years old hospitalized for viral LRTI during two consecutive respiratory seasons (May 2016 to August 2017); their nutritional status was assessed, and nasopharyngeal and blood samples were obtained. S. aureus, S. pneumoniae, H. influenzae, M. catarrhalis, and respiratory viruses were identified in nasopharyngeal samples by qPCR. Cytokine concentrations were measured in nasopharyngeal and blood samples. Disease severity was assessed by the length of hospitalization and oxygen therapy. Results: Nasopharyngeal pathogenic bacteria were identified in 96.6% of the enrolled children, and 80% of them tested positive for two or more bacteria. The presence and loads of M. catarrhalis was higher (p = 0.001 and p = 0.022, respectively) in children with overnutrition (n = 47) compared with those with normal weights (n = 69). In addition, the detection of >2 bacteria was more frequent in children with overnutrition compared to those with normal weight (p = 0.02). Multivariate regression models showed that the presence and loads of S. pneumoniae and M. catarrhalis were associated with higher concentrations of IL-6 in plasma and TNF-α in mucosal samples in children with overnutrition. Conclusions: The nasopharyngeal profile of young children with overnutrition was characterized by an over representation of pathogenic bacteria and proinflammatory cytokines.


Subject(s)
Overnutrition , Respiratory Tract Infections , Bacteria , Child , Child, Preschool , Cytokines , Haemophilus influenzae , Humans , Infant , Moraxella catarrhalis , Nasopharynx , Respiratory Tract Infections/microbiology , Staphylococcus aureus , Streptococcus pneumoniae
4.
Int. j. morphol ; 40(5): 1276-1283, 2022. ilus, graf
Article in Spanish | LILACS | ID: biblio-1405294

ABSTRACT

RESUMEN: Las bacteriocinas son péptidos antimicrobianos de síntesis ribosomal secretadas por bacterias. Dentro de estas destaca nisina que posee potenciales usos en terapias antibióticas, como biopreservante de alimentos y probióticos. También se ha descrito que nisina posee citotoxicidad sobre líneas celulares neoplásicas, pero existe poca información de su efecto sobre células tumorales sanguíneas. Debido al potencial uso que presenta nisina, es relevante determinar la toxicidad que presenta sobre líneas celulares tumorales del tipo sanguíneo. Para esto, se realizaron ensayos de actividad hemolítica sobre eritrocitos humanos y de toxicidad sobre células mononucleares de sangre periférica humanas, determinándose que nisina no posee efecto citotóxico sobre este tipo de células normales humanas sanguíneas. Se realizaron también, ensayos de citotoxicidad con líneas celulares tumorales (K562 y U937), con el fin de determinar dosis, tiempo de exposición y selectividad en el efecto tóxico de nisina sobre las células tumorales humanas. Estos ensayos muestran que nisina presenta actividad citotóxica sobre líneas celulares K562 y U937 a las 72 h de exposición, a una concentración de 40 µg/mL, que corresponde a 100 veces la concentración mínima inhibitoria (MIC) usada para su acción sobre bacterias. Al comparar el efecto de nisina sobre células mononucleares de sangre periférica humanas con las líneas tumorales linfoides y mieloides (K562 y U937 respectivamente), se observa un efecto selectivo de nisina sobre las células tumorales sanguíneas.


SUMMARY: Bacteriocins are antimicrobial peptides of ribosomal synthesis secreted by bacteria. Among these, nisin stands out, which has potential uses in antibiotic therapies, as a food bio preservative and probiotics. Nisin has also been reported to have cytotoxicity on neoplastic cell lines, but there is little information on its effect on blood tumor cells. Due to the potential use that nisin presents, it is relevant to determine the toxicity it presents on tumor cell lines of the blood type. For this, hemolytic activity tests were carried out on human erythrocytes and toxicity on human peripheral blood mononuclear cells, determining that nisin does not have a toxic effect on this type of normal human blood cells. Cytotoxicity tests were also carried out with tumor cell lines (K562 and U937), to determine dose, exposure time and selectivity in the toxic effect of nisin on human tumor cells. These tests show that nisin shows cytotoxic activity on K562 and U937 cell lines at 72 h of exposure, at a concentration of 40 µg / mL, which corresponds to 100 times the minimum inhibitory concentration (MIC) used for its action on bacteria. When comparing the effect of nisin on human peripheral blood mononuclear cells with lymphoid and myeloid tumor lines (K562 and U937 respectively), a selective effect of nisin on blood tumor cells is observed.


Subject(s)
Humans , Cell Line, Tumor/drug effects , Anti-Bacterial Agents/pharmacology , Nisin/pharmacology , Staphylococcus aureus/drug effects , Bacteriocins/pharmacology , In Vitro Techniques , Microbial Sensitivity Tests , Cell Survival/drug effects , K562 Cells/drug effects , U937 Cells/drug effects
5.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818894

ABSTRACT

We announce the draft genome sequence of Pseudomonas sp. strain K2I15, isolated from the rhizosphere of Deschampsia antarctica Desv. The genome sequence had 6,645,031 bp with a G+C content of 60.4%. This genome provides insights into the niche adaptation, prophage carriage, and evolution of this specific Antarctic bacteria.

6.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818897

ABSTRACT

We present here the draft genome sequence of Bacillus sp. strain K2I17, which was isolated from the rhizosphere of Deschampsia antarctica Desv. The genomic sequence contained 6,113,341 bp. This genome provides insights into the possible new biomedical and biotechnical applications of this specific Antarctic bacterium.

7.
Infect Immun ; 82(11): 4767-77, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25156722

ABSTRACT

Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization-tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Shiga-Toxigenic Escherichia coli/metabolism , Antibodies, Bacterial , Bacterial Outer Membrane Proteins/genetics , Escherichia coli Infections/immunology , Escherichia coli Proteins/genetics , Genome, Bacterial , Humans , Immunoglobulin A , Immunoglobulin G , Shiga-Toxigenic Escherichia coli/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...