Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 220(2): 391-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19833128

ABSTRACT

Mild hypothermia lessens brain injury when initiated after the onset of global or focal ischemia. The present study sought to determine whether cooling to approximately 33 degrees C provides enduring benefit when initiated 1 h after permanent middle cerebral artery occlusion (pMCAO, via electrocautery) in adult rats and whether protection depends upon treatment duration and cooling technique. In the first experiment, systemic cooling was induced in non-anesthetized rats through a whole-body exposure technique that used fans and water mist. In comparison to normothermic controls, 12- and 48-h bouts of hypothermia significantly lessened functional impairment, such as skilled reaching ability, and lesion volume out to a 1-month survival. In the second experiment, brain-selective cooling was induced in awake rats via a water-cooled metal strip implanted underneath the temporalis muscle overlying the ischemic territory. Use of a 48-h cooling treatment significantly mitigated injury and behavioral impairment whereas a 12-h treatment did not. These findings show that while systemic and focal techniques are effective when initiated after the onset of pMCAO, they differ in efficacy depending upon the treatment duration. A direct and uncomplicated comparison between methods is problematic, however, due to unknown gradients in brain temperature and the use of two separate experiments. In summary, prolonged cooling, even when delayed after onset of pMCAO, provides enduring behavioral and histological protection sufficient to suggest that it will be clinically effective. Nonetheless, further pre-clinical work is needed to improve treatment protocols, such as identifying the optimal depth of cooling, and how these factors interact with cooling method.


Subject(s)
Brain Ischemia/therapy , Brain/physiology , Hypothermia, Induced , Anesthesia , Animals , Blood Pressure/physiology , Brain Ischemia/pathology , Brain Ischemia/psychology , Carbon Dioxide/blood , Forelimb/innervation , Forelimb/physiology , Functional Laterality/physiology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/therapy , Male , Nervous System Diseases/psychology , Oxygen/blood , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Telemetry , Treatment Outcome
2.
Exp Neurol ; 212(2): 386-92, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18538766

ABSTRACT

Mild hypothermia reduces injury in models of global and focal cerebral ischemia even when initiated after the insult. Neuroprotection depends critically upon the duration of hypothermia with longer treatments often being more efficacious. However, the ideal treatment duration is not known for most insults and this knowledge would facilitate clinical studies. Thus, we compared 12, 24 and 48 h of systemic hypothermia (33 degrees C vs. normothermia) initiated 1 h after permanent middle cerebral artery occlusion (pMCAO), which was produced by permanent occlusion of the carotid arteries and cauterization of the distal MCA in rat. Behavioral recovery and lesion volume were determined 7 days after pMCAO. All three treatments significantly and equally attenuated neurological deficits (e.g., forelimb placing response). Conversely, stepping error rate in the horizontal ladder test was significantly reduced only by the 24-h (18.7%) and 48-h treatments (11.7%) compared to normothermic rats (34.4%), and the 48-h treatment was significantly better than the 12-h treatment (28.8%). Similarly, brain injury was significantly reduced by 24-h (78.8 mm(3) lesion volume) and 48-h (66.8 mm(3)) treatments compared to normothermia (142.6 mm(3)), and the 48-h treatment was significantly better than the 12-h duration (114.6 mm(3)). In separate experiments cerebral edema was measured via wet-dry weight measurements and significantly reduced by hypothermia (e.g., from 83.7% water in the injured cortex of normothermic rats to 81.4% in rats cooled for one day), but for this there were no significant duration effects. In summary, prolonged hypothermia treatment provides superior protection overall, but this is not explained by reductions in edema.


Subject(s)
Brain Ischemia/complications , Hypothermia/etiology , Analysis of Variance , Animals , Behavior, Animal , Brain Ischemia/pathology , Disease Models, Animal , Male , Neurologic Examination , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Time Factors , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...