Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Bioconjug Chem ; 35(4): 517-527, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38482815

ABSTRACT

Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.


Subject(s)
Azides , Peptidoglycan , Humans , Animals , Mice , Azides/chemistry , Tissue Distribution , Positron-Emission Tomography , Bacteria , Amino Acids , Alanine , Fluorine Radioisotopes/chemistry
2.
Neurol Sci ; 45(3): 1057-1062, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37828389

ABSTRACT

BACKGROUND: Creutzfeldt-Jakob disease (CJD) is a fatal neurodegenerative disease characterized by rapidly progressive dementia, motor impairments, and psychiatric symptoms. Sensory disturbances were occasionally reported as well. The study aims to describe the sensory symptoms of the disease. METHODS: The CJD Israeli National Database was screened for patients who presented sensory symptoms throughout the disease course. Symptoms, characteristics, and distribution were reviewed and the demographic and clinical data (sex, etiologies of the disease, age of onset, disease duration, neurological exam finding, tau protein level, EEG and MRI findings) were compared with the demographics and clinical data of CJD without sensory symptoms. Then, the patients with sensory symptoms were divided into patients with symptom distribution consistent with peripheral nervous system (PNS) involvement and central nervous system (CNS) involvement. The demographics and clinical data of the 2 groups were compared. RESULTS: Eighty-four CJD patients with sensory symptoms and 645 CJD patients without sensory symptoms were included in the study. Sensory symptoms were more common in genetic E200K CJD patients (14.6% vs. 5.6% respectively, p = 0.0005) (chi-squared test). Numbness and neuropathic pain were the most common symptoms and distribution of symptoms of "stocking gloves" with decreased deep tendon reflexes suggesting peripheral neuropathy in 44% of the patients. In these patients, the classical EEG findings of Periodic Sharp Wave Complexes were less often found (58% vs. 22%, p = 0.02) (chi-squared test). CONCLUSIONS: Sensory symptoms are more common in E200K patients and often follow peripheral neuropathy distribution that suggests PNS involvement.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Peripheral Nervous System Diseases , Humans , Creutzfeldt-Jakob Syndrome/complications , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Neurodegenerative Diseases/diagnosis , Magnetic Resonance Imaging , Diagnosis, Differential , Sensation Disorders/etiology , Sensation Disorders/diagnosis , Peripheral Nervous System Diseases/diagnosis
3.
J Infect Dis ; 228(Suppl 4): S281-S290, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788505

ABSTRACT

BACKGROUND: Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS: We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS: In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS: Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.


Subject(s)
Discitis , Osteomyelitis , Staphylococcal Infections , Humans , Rats , Animals , Discitis/diagnostic imaging , 4-Aminobenzoic Acid , Escherichia coli , Positron-Emission Tomography/methods , Staphylococcal Infections/diagnostic imaging , Osteomyelitis/microbiology , Bacteria , Staphylococcus aureus , Radiopharmaceuticals
4.
Nat Commun ; 14(1): 6245, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803001

ABSTRACT

Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but efficient delineation of their molecular roles during infection remains a challenge. Here we use Perturb-seq, combining genetic perturbations with a single-cell readout, to investigate how inactivation of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages of infection and modulations of the interferon response. However, only a small percentage of host factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides massively parallel functional characterization of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and bystander cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Proteomics , Lung , Epithelial Cells
5.
J Am Chem Soc ; 145(32): 17632-17642, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37535945

ABSTRACT

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with ß-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.


Subject(s)
Fluorodeoxyglucose F18 , Trehalose , Humans , Cellobiose , Staphylococcus aureus , Positron-Emission Tomography/methods , Bacteria
6.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37293043

ABSTRACT

Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach, that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[ 18 F]-fluoro-D-glucose ([ 18 F]FDG), the most common tracer used in clinical imaging, to form [ 18 F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [ 18 F]FDG was reacted with ß-D-glucose-1-phosphate in the presence of maltose phosphorylase, both the α-1,4 and α-1,3-linked products 2-deoxy-[ 18 F]-fluoro-maltose ([ 18 F]FDM) and 2-deoxy-2-[ 18 F]-fluoro-sakebiose ([ 18 F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (ß-1,3), and cellobiose (ß-1,4) phosphorylases to synthesize 2-deoxy-2-[ 18 F]fluoro-trehalose ([ 18 F]FDT), 2-deoxy-2-[ 18 F]fluoro-laminaribiose ([ 18 F]FDL), and 2-deoxy-2-[ 18 F]fluoro-cellobiose ([ 18 F]FDC). We subsequently tested [ 18 F]FDM and [ 18 F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. The lead sakebiose-derived tracer [ 18 F]FSK was stable in human serum and showed high uptake in preclinical models of myositis and vertebral discitis-osteomyelitis. Both the synthetic ease, and high sensitivity of [ 18 F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of this tracer to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [ 18 F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.

7.
Neurol Res ; 45(9): 854-857, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165675

ABSTRACT

OBJECTIVES: The onset of Creutzfeldt-Jakob disease (CJD) is usually around the age of 60, but younger patients have been described as well. Our study characterizes the demographic and clinical features of young-onset CJD patients. METHODS: The CJD Israeli National Database was reviewed, and the patients were divided into groups of young (<40-year-old) (Y|) and older disease onset (>40-year-old) (O). Each group was further divided into sporadic (sCJD) and genetic (gCJD) patients. Clinical and demographic parameters were compared between the groups. RESULTS: The study included 731 patients (Y- 18 patients, O- 713 patients). MRI showed classical features more often in the older population (O-76.9%, Y-36%, p = 0.006). Rapidly progressive dementia as a presenting feature was more common in the older group (O = 58%, Y = 27.7%, p = 0.019) whereas cerebellar onset (gait instability, dysarthria) was more common in the younger group (O = 6.7%, Y = 27.7%, p = 0.036)). Among gCJD patients, rapidly progressive dementia was commonly seen in older patients (O = 54%, Y = 21% p = 0.008) whereas cerebellar symptoms were seen in young patients (O = 7%, Y = 30% p = 0.01) Typical MRI findings were seen in 37% of young people compared to 87% of older patients (p = 0.002). No significant differences were between young and older patients in the sCJD group. CONCLUSION: Young-onset gCJD patients have unique disease features including less typical brain MRI changes, a lower prevalence of dementia, and a higher prevalence of cerebellar signs at disease onset.


Subject(s)
Creutzfeldt-Jakob Syndrome , Humans , Adolescent , Aged , Adult , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/epidemiology , Magnetic Resonance Imaging , Databases, Factual , Brain/diagnostic imaging
8.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747776

ABSTRACT

Mycobacterium tuberculosis is currently the leading cause of death by any bacterial infection1. The mycolic acid layer of the cell wall is essential for viability and virulence, and the enzymes responsible for its synthesis are therefore front line targets for antimycobacterial drug development2,3. Polyketide synthase 13 (Pks13) is a module comprised of a closely symmetric parallel dimer of chains, each encoding several enzymatic and transport functions, that carries out the condensation of two different very long chain fatty acids to produce mycolic acids that are essential components of the mycobacterial cell wall. Consequently individual enzymatic domains of Pks13 are targets for antimycobacterial drug development4. To understand this machinery, we sought to determine the structure and domain trajectories of the dimeric multi-enzyme Pks13, a 2×198,426 Dalton complex, from protein purified endogenously from mycobacteria under normal growth conditions, to capture it with normal substrates bound trapped 'in action'. Structures of the multi-domain assembly revealed by cryogenic electron microscopy (cryoEM) define the ketosynthase (KS), linker, and acyltransferase (AT) domains, each at atomic resolution (1.8Å), with bound substrates defined at 2.4Å and 2.9Å resolution. Image classification reveals two distinct structures with alternate locations of the N-terminal acyl carrier protein (termed ACP1a, ACP1b) seen at 3.6Å and 4.6Å resolution respectively. These two structures suggest plausible intermediate states, related by a ~60Å movement of ACP1, on the pathway for substrate delivery from the fatty acyl-ACP ligase (FadD32) to the ketosynthase domain. The linking sequence between ACP1 and the KS includes an 11 amino acid sequence with 6 negatively charged side chains that lies in different positively charged grooves on the KS in ACP1a versus ACP1b structures. This charge complementarity between the extended chain and the grooves suggests some stabilization of these two distinct orientations. Other domains are visible at lower resolution and indicate flexibility relative to the KS-AT core. The chemical structures of three bound endogenous long chain fatty acid substrates with their proximal regions defined in the structures were determined by electrospray ionization mass spectrometry. The domain proximities were probed by chemical cross-linking and identified by mass spectrometry. These were incorporated into integrative structure modeling to define multiple domain configurations that transport the very long fatty acid chains throughout the multistep Pks13 mediated synthetic pathway.

9.
Nat Struct Mol Biol ; 30(3): 296-308, 2023 03.
Article in English | MEDLINE | ID: mdl-36782050

ABSTRACT

The mycolic acid layer of the Mycobacterium tuberculosis cell wall is essential for viability and virulence, and the enzymes responsible for its synthesis are targets for antimycobacterial drug development. Polyketide synthase 13 (Pks13) is a module encoding several enzymatic and transport functions that carries out the condensation of two different long-chain fatty acids to produce mycolic acids. We determined structures by cryogenic-electron microscopy of dimeric multi-enzyme Pks13 purified from mycobacteria under normal growth conditions, captured with native substrates. Structures define the ketosynthase (KS), linker and acyl transferase (AT) domains at 1.8 Å resolution and two alternative locations of the N-terminal acyl carrier protein. These structures suggest intermediate states on the pathway for substrate delivery to the KS domain. Other domains, visible at lower resolution, are flexible relative to the KS-AT core. The chemical structures of three bound endogenous long-chain fatty acid substrates were determined by electrospray ionization mass spectrometry.


Subject(s)
Mycobacterium tuberculosis , Polyketide Synthases , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Mycobacterium tuberculosis/metabolism , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Fatty Acids/metabolism
10.
Structure ; 31(3): 253-264.e6, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805129

ABSTRACT

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Monoclonal , Protein Binding , Antibodies, Neutralizing
11.
Acta Neurol Scand ; 146(5): 586-589, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35974683

ABSTRACT

BACKGROUND: The largest cluster of genetic Creutzfeldt- Jakob Disease (CJD) exists in Libyan Jews carrying the E200K mutation in the PRNP gene. However, there is another cluster of genetic CJD with E200K mutation in families of Turkish-Jewish origin. AIMS: In this retrospective study, we aim to describe the demographic and clinical features of this population of patients. MATERIAL AND METHODS: The Israeli National CJD database was searched for demographic, clinical, imaging, and laboratory data of genetic CJD patients of Libyan and Turkish ancestry with the E200K mutation. The data of Libyan and Turkish patients were compared with notice similar or different demographic or clinical courses. RESULTS: Four hundred and twenty-three patients with CJD of Libyan (L) ancestry and 27 patients with CJD of Turkish (T) ancestry were identified. There were no significant differences in demographic and clinical data between the two populations (age of onset: T = 62 ± 8.8, L = 60 ± 9.7; age of death: T = 63 ± 8.6, L = 61 ± 9.7; and disease duration: T = 7.8 ± 8.4 months, L = 9.6 ± 13.6 months). Rapidly progressive dementia was the most common presentation in both groups, followed by pure cerebellar onset. The levels of tau protein in CSF did not differ between groups (T = 1290 ± 397.6 pg/ml, L = 1276 ± 594.2 pg/ml). MRI and EEG showed classical CJD features in most patients in both groups. DISCUSSION: The E200K mutation is the most common mutation among gCJD patients and was reported in different ethnical populations, suggesting several independent haplotypes of the mutation. The Turkish-Jew cluster, first described in this study, shares similar demographic and clinical features with the bigger cluster of Libyan-Jews CJD patients. CONCLUSION: E200K gCJD patients of Turkish ancestry share similar demographic and clinical features to patients of Libyan descent, suggesting a common origin of both populations.


Subject(s)
Creutzfeldt-Jakob Syndrome , Creutzfeldt-Jakob Syndrome/epidemiology , Creutzfeldt-Jakob Syndrome/genetics , Demography , Humans , Jews/genetics , Mutation/genetics , Retrospective Studies , tau Proteins
12.
bioRxiv ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35982665

ABSTRACT

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-503400

ABSTRACT

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-500120

ABSTRACT

Numerous host factors of SARS-CoV-2 have been identified by screening approaches, but delineating their molecular roles during infection and whether they can be targeted for antiviral intervention remains a challenge. Here we use Perturb-seq, a single-cell CRISPR screening approach, to investigate how CRISPR interference of host factors changes the course of SARS-CoV-2 infection and the host response in human lung epithelial cells. Our data reveal two classes of host factors with pronounced phenotypes: factors required for the response to interferon and factors required for entry or early infection. Among the latter, we have characterized the NF-{kappa}B inhibitor I{kappa}B (NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors acting early in infection. Overall, our study provides high-throughput functional validation of host factors of SARS-CoV-2 and describes their roles during viral infection in both infected and bystander cells.

15.
Eur J Nucl Med Mol Imaging ; 49(11): 3761-3771, 2022 09.
Article in English | MEDLINE | ID: mdl-35732972

ABSTRACT

PURPOSE: Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS: 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS: D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION: D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.


Subject(s)
Methionine , Positron-Emission Tomography , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography/methods , Radiometry , Tissue Distribution
16.
Glob Health Action ; 15(1): 2062175, 2022 12 31.
Article in English | MEDLINE | ID: mdl-35730550

ABSTRACT

Science education and research have the potential to drive profound change in low- and middle-income countries (LMICs) through encouraging innovation, attracting industry, and creating job opportunities. However, in LMICs, research capacity is often limited, and acquisition of funding and access to state-of-the-art technologies is challenging. The Alliance for Global Health and Science (the Alliance) was founded as a partnership between the University of California, Berkeley (USA) and Makerere University (Uganda), with the goal of strengthening Makerere University's capacity for bioscience research. The flagship program of the Alliance partnership is the MU/UCB Biosciences Training Program, an in-country, hands-on workshop model that trains a large number of students from Makerere University in infectious disease and molecular biology research. This approach nucleates training of larger and more diverse groups of students, development of mentoring and bi-directional research partnerships, and support of the local economy. Here, we describe the project, its conception, implementation, challenges, and outcomes of bioscience research workshops. We aim to provide a blueprint for workshop implementation, and create a valuable resource for bioscience research capacity strengthening in LMICs.


Subject(s)
Developing Countries , Global Health , Capacity Building , Humans , Poverty , Students , Universities
17.
Appetite ; 175: 106019, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35500722

ABSTRACT

OBJECTIVE: Food craving, restrained eating, hunger, and negative emotions may predict and reinforce one another. However, less is known about how they interact together as a complex system in daily life. Therefore, we used a dynamic network approach to examine the associations between food craving, restrained eating, hunger and negative emotions in daily life. METHODS: Food craving, restrained eating, hunger and negative emotions were measured using ecological momentary assessment three times a day over ten days in a community sample in Israel (n = 123). A two-step multilevel vector auto-regression network analysis was used to estimate temporal, contemporaneous and between-persons networks. RESULTS: In the temporal network, restrained eating was the most central predictor of eating behaviors and negative emotions, predicting food craving and hunger as well as sadness and loneliness. Food craving was also predicted by hunger and stress, and hunger predicted loneliness. In the contemporaneous network, food craving was associated with hunger and feeling bored, and higher anger was associated with lower restrained eating. Stress and sadness were central negative emotions in the models. DISCUSSION: This study suggests possible temporal and contemporaneous relationships between food craving, restrained eating, hunger and negative emotions, emphasizing their complex interactions in daily life. Restrained eating and stress should be investigated as potential targets for interventions addressing food craving and overeating.

18.
Mol Cell Proteomics ; 21(7): 100247, 2022 07.
Article in English | MEDLINE | ID: mdl-35594991

ABSTRACT

Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities.


Subject(s)
COVID-19 , Interferon-beta , Oncogenes , Proteomics , Animals , Antiviral Restriction Factors , COVID-19/immunology , Carcinogenesis , Cell Line, Tumor , Humans , Interferon-beta/immunology , Proto-Oncogene Proteins p21(ras)/genetics , SARS-CoV-2
19.
Antimicrob Agents Chemother ; 66(5): e0005422, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35471042

ABSTRACT

The World Health Organization (WHO) has warned that our current arsenal of antibiotics is not innovative enough to face impending infectious diseases, especially those caused by multidrug-resistant Gram-negative pathogens. Although the current preclinical pipeline is well stocked with novel candidates, the last U.S. Food and Drug Administration (FDA)-approved antibiotic with a novel mechanism of action against Gram-negative bacteria was discovered nearly 60 years ago. Of all the antibiotic candidates that initiated investigational new drug (IND) applications in the 2000s, 17% earned FDA approval within 12 years, while an overwhelming 62% were discontinued in that time frame. These "leaks" in the clinical pipeline, where compounds with clinical potential are abandoned during clinical development, indicate that scientific innovations are not reaching the clinic and providing benefits to patients. This is true for not only novel candidates but also candidates from existing antibiotic classes with clinically validated targets. By identifying the sources of the leaks in the clinical pipeline, future developmental efforts can be directed toward strategies that are more likely to flow into clinical use. In this review, we conduct a detailed failure analysis of clinical candidates with Gram-negative activity that have fallen out of the clinical pipeline over the past decade. Although limited by incomplete data disclosure from companies engaging in antibiotic development, we attempt to distill the developmental challenges faced by each discontinued candidate. It is our hope that this insight can help de-risk antibiotic development and bring new, effective antibiotics to the clinic.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacterial Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , United States , United States Food and Drug Administration
20.
Neurol Sci ; 43(7): 4275-4279, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35257261

ABSTRACT

BACKGROUND: Creutzfeldt-Jacob disease (CJD) is a fatal neuro-degenerative disease, characterized by rapid and intense deterioration, mainly cognitive, leading to death. The typical onset of the disease is around the age of 67. PURPOSE: To characterize the demographic and clinical features of the population of CJD patients with late-onset disease. METHODS: In this retrospective study, the Israeli national database of prion diseases was screened for CJD patients with disease age of onset > 80 years between 1960 and 2016. Patient's demographic and clinical data were collected including sex, type of disease (sporadic/ genetic), clinical presentation, lab results including tau protein level, imaging, and EEG characteristics. Then, the clinical and demographic data of patients with late onset (> 80 years) (L) and patients with usual age of onset (< 80 years) (U) were compared. RESULTS: The study included 728 patients, 23 patients (3.3%) with late-onset disease (82.2.4±4 years, range 80-88) and 705 with usual disease onset (61.31 ± 9.47 years, range 34-80). Sporadic CJD was more common in the late-onset group (18/23 patients (78.2%) (L) vs. 256/705 patients (36.3%) (U)) (p = 0.0001, chi-square test). Classical EEG finding of periodic sharp wave activity were seen more often in the late-onset patients (55% (L) vs. 32.5% (U)) (p = 0.05, chi-square test). The rest of the demographic and clinical features were similar in both groups. CONCLUSION: Late- and usual-onset diseases are similar in most of demographic and clinical features suggesting a common disease type with normal distribution of age of onset.


Subject(s)
Creutzfeldt-Jakob Syndrome , Aged, 80 and over , Chi-Square Distribution , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/epidemiology , Creutzfeldt-Jakob Syndrome/genetics , Humans , Late Onset Disorders , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...