Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1851: 263-275, 2019.
Article in English | MEDLINE | ID: mdl-30298402

ABSTRACT

The goal of our research is to increase our understanding of how biology works at the molecular level, with a particular focus on how enzymes evolve their functions through adaptations to generate new specificities and mechanisms. FunTree (Sillitoe and Furnham, Nucleic Acids Res 44:D317-D323, 2016) is a resource that brings together sequence, structure, phylogenetic, and chemical and mechanistic information for 2340 CATH superfamilies (Sillitoe et al., Nucleic Acids Res 43:D376-D381, 2015) (which all contain at least one enzyme) to allow evolution to be investigated within a structurally defined superfamily.We will give an overview of FunTree's use of sequence and structural alignments to cluster proteins within a superfamily into structurally similar groups (SSGs) and generate phylogenetic trees augmented by ancestral character estimations (ACE). This core information is supplemented with new measures of functional similarity (Rahman et al., Nat Methods 11:171-174, 2014) to compare enzyme reactions based on overall bond changes, reaction centers (the local environment atoms involved in the reaction), and the structural similarities of the metabolites involved in the reaction. These trees are also decorated with taxonomic and Enzyme Commission (EC) code and GO annotations, forming the basis of a comprehensive web interface that can be found at http://www.funtree.info . In this chapter, we will discuss the various analyses and supporting computational tools in more detail, describing the steps required to extract information.


Subject(s)
Proteins/chemistry , Amino Acid Sequence , Databases, Protein , Evolution, Molecular , Phylogeny , Protein Structure, Tertiary , Proteins/classification , Sequence Analysis, Protein
2.
Curr Opin Struct Biol ; 47: 131-139, 2017 12.
Article in English | MEDLINE | ID: mdl-28892668

ABSTRACT

In this review, we will explore recent computational approaches to understand enzyme evolution from the perspective of protein structure, dynamics and promiscuity. We will present quantitative methods to measure the size of evolutionary steps within a structural domain, allowing the correlation between change in substrate and domain structure to be assessed, and giving insights into the evolvability of different domains in terms of the number, types and sizes of evolutionary steps observed. These approaches will help to understand the evolution of new catalytic and non-catalytic functionality in response to environmental demands, showing potential to guide de novoenzyme design and directed evolution experiments.


Subject(s)
Biological Evolution , Enzymes/chemistry , Enzymes/metabolism , Enzyme Activation , Enzymes/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...