Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1218(39): 6884-91, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21871632

ABSTRACT

The potential of 1.7 µm ethylene bridged hybrid silica phase was investigated for the separation of twelve imidazolium-based ionic liquid cations. U-shaped retention profile was observed for all solutes with an increase in retention at both low and high acetonitrile content. Chromatographic behaviour of imidazolium cations in both hydrophilic interaction chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes was studied by varying key parameters such as buffer concentration and pH, acid additive, organic modifier and column temperature. Experimental data provided some evidences that under PALC conditions cationic solutes are retained predominantly by mixed hydrophobic/ion-exchange interactions. In the HILIC mode, both partitioning and ion-exchange interactions are responsible for the retention of solutes. Compared to PALC, HILIC provided significantly higher efficiencies with less or even no peak tailing, better separation selectivity and greater resistance to overload. In PALC mode gradient elution was required to achieve adequate retentivity of all solutes but selectivity was not sufficient to distinguish between solutes with very similar hydrophobicity. In contrast, under HILIC conditions twelve solutes were almost completely resolved in less than 4 min by using isocratic elution. Summarizing, it could be concluded that ethylene bridged hybrid silica column providing a dual retention mechanism offers the possibility of selecting between the two retention modes with opposite separation selectivity, just by changing the composition of the mobile phase.


Subject(s)
Acetonitriles/chemistry , Chromatography, Liquid/methods , Ethylenes/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Silicon Dioxide/chemistry , Cations/chemistry , Chromatography, Liquid/instrumentation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...