Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 8886, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25744495

ABSTRACT

Dietary methionine restriction (MR) in rodents increased lifespan despite higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia, which are symptoms associated with increased risk for cardiovascular disease. We investigated this paradoxical effect of MR on cardiac function using young, old, and apolipoprotein E-deficient (ApoE-KO) mice. Indeed, MR animals exhibited higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia with a molecular pattern consistent with cardiac stress while maintaining the integrity of cardiac structure. Baseline cardiac function, which was measured by non-invasive electrocardiography (ECG), showed that young MR mice had prolonged QRS intervals compared with control-fed (CF) mice, whereas old and ApoE-KO mice showed similar results for both groups. Following ß-adrenergic challenge, responses of MR mice were either similar or attenuated compared with CF mice. Cardiac contractility, which was measured by isolated heart retrograde perfusion, was similar in both groups of old mice. Finally, the MR diet induced secretion of cardioprotective hormones, adiponectin and fibroblast growth factor 21 (FGF21), in MR mice with concomitant alterations in cardiac metabolic molecular signatures. Our findings demonstrate that MR diet does not alter cardiac function in mice despite the presence of hyperhomocysteinemia because of the adaptive responses of increased adiponectin and FGF21 levels.


Subject(s)
Adaptation, Physiological , Cardiovascular System/physiopathology , Diet , Hyperhomocysteinemia/etiology , Hyperhomocysteinemia/physiopathology , Methionine , Adiponectin/metabolism , Adrenergic beta-Agonists/administration & dosage , Adrenergic beta-Agonists/pharmacology , Age Factors , Animals , Apolipoproteins E/deficiency , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Disease Susceptibility , Fibroblast Growth Factors/metabolism , Male , Mice , Mice, Knockout , Signal Transduction
2.
Front Genet ; 5: 122, 2014.
Article in English | MEDLINE | ID: mdl-24847356

ABSTRACT

It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met) ingestion by rats extends lifespan (Orentreich et al., 1993). Since then, several studies have replicated the effects of dietary methionine restricted (MR) in delaying age-related diseases (Richie et al., 1994; Miller et al., 2005; Ables et al., 2012; Sanchez-Roman and Barja, 2013). We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY, September 2013. The goals were (1) to gather researchers with an interest in MR and lifespan, (2) to exchange knowledge, (3) to generate ideas for future investigations, and (4) to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH), and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones, and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g., the naked mole rat, Brandt's bat, and Drosophila, in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies (Figure 3).

3.
Metabolism ; 62(11): 1651-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23928105

ABSTRACT

OBJECTIVE: This study investigated the effects of dietary methionine restriction (MR) on the progression of established hepatic steatosis in the leptin-deficient ob/ob mouse. MATERIAL/METHODS: Ten-week-old ob/ob mice were fed diets containing 0.86% (control-fed; CF) or 0.12% methionine (MR) for 14 weeks. At 14 weeks, liver and fat were excised and blood was collected for analysis. In another study, blood was collected to determine in vivo triglyceride (TG) and very-low-density lipoprotein (VLDL) secretion rates. Liver histology was conducted to determine the severity of steatosis. Hepatic TG, free fatty acid levels, and fatty acid oxidation (FAO) were also measured. Gene expression was analyzed by quantitative PCR. RESULTS: MR reversed the severity of steatosis in the ob/ob mouse. This was accompanied by reduced body weight despite similar weight-specific food intake. Compared with the CF group, hepatic TG levels were significantly reduced in response to MR, but adipose tissue weight was not decreased. MR reduced insulin and HOMA ratios but increased total and high-molecular-weight adiponectin levels. Scd1 gene expression was significantly downregulated, while Acadvl, Hadha, and Hadhb were upregulated in MR, corresponding with increased ß-hydroxybutyrate levels and a trend toward increased FAO. The VLDL secretion rate was also significantly increased in the MR mice, as were the mRNA levels of ApoB and Mttp. The expression of inflammatory markers, such as Tnf-α and Ccr2, was also downregulated by MR. CONCLUSIONS: Our data indicate that MR reverses steatosis in the ob/ob mouse liver by promoting FAO, increasing the export of lipids, and reducing obesity-related inflammatory responses.


Subject(s)
Fatty Acids/metabolism , Fatty Liver/prevention & control , Leptin/deficiency , Lipid Metabolism , Liver/metabolism , Methionine/administration & dosage , Methionine/pharmacology , Obesity/metabolism , 3-Hydroxybutyric Acid/blood , Animals , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Diet , Disease Progression , Fatty Liver/blood , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression Regulation , Homeostasis , Inflammation/etiology , Inflammation/metabolism , Insulin/metabolism , Lipoproteins, VLDL/blood , Male , Mice , Mice, Obese , Obesity/blood , Obesity/pathology , Oxidation-Reduction , Severity of Illness Index , Triglycerides/blood
4.
Exp Gerontol ; 48(7): 654-60, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22819757

ABSTRACT

Restriction of dietary methionine by 80% slows the progression of aged-related diseases and prolongs lifespan in rodents. A salient feature of the methionine restriction phenotype is the significant reduction of adipose tissue mass, which is associated with improvement of insulin sensitivity. These beneficial effects of MR involve a host of metabolic adaptations leading to increased mitochondrial biogenesis and function, elevated energy expenditure, changes of lipid and carbohydrate homeostasis, and decreased oxidative damage and inflammation. This review summarizes observations from MR studies and provides insight about potential mediators of tissue-specific responses associated with MR's favorable metabolic effects that contribute to health and lifespan extension.


Subject(s)
Aging/metabolism , Diet , Energy Metabolism , Methionine/deficiency , Adaptation, Physiological , Adiposity , Age Factors , Animals , Humans , Insulin Resistance , Mice , Oxidative Stress , Phenotype , Rats , Rodentia
5.
Metabolism ; 62(4): 509-17, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23154184

ABSTRACT

OBJECTIVES: Methionine-restricted (MR) rats, which are lean and insulin sensitive, have low serum total cysteine (tCys) and taurine and decreased hepatic expression and activity indices of stearoyl-coenzyme A desaturase-1 (SCD1). These effects are partly or completely reversed by cysteine supplementation. We investigated whether reversal of MR phenotypes can be achieved by other sulfur compounds, namely taurine or N-acetylcysteine (NAC). METHODS: MR and control-fed (CF) rats were supplemented with taurine (0.5%) or NAC (0.5%) for 12weeks. Adiposity, serum sulfur amino acids (SAA), Scd1 gene expression in liver and white adipose tissue, and SCD1 activity indices (calculated from serum fatty acid profile) were monitored. RESULTS: Taurine supplementation of MR rats did not restore weight gain or hepatic Scd1 expression or indices to CF levels, but further decreased adiposity. Taurine supplementation of CF rats did not affect adiposity, but lowered triglyceridemia. NAC supplementation in MR rats raised tCys and partly or completely reversed MR effects on weight, fat %, Scd1 expression in liver and white adipose tissue, and estimated SCD1 activity. In CF rats, NAC decreased body fat % and lowered SCD1-18 activity index (P<0.001). Serum triglycerides and leptin were over 40% lower in CF+NAC relative to CF rats (P≤0.003 for both). In all groups, change in tCys correlated with change in SCD1-16 index (partial r=0.60, P<0.001) independent of other SAA. CONCLUSION: The results rule out taurine as a mediator of increased adiposity produced by cysteine in MR, and show that NAC, similar to L-cysteine, blocks anti-obesity effects of MR. Our data show that dietary SAA can influence adiposity in part through mechanisms that converge on SCD1 function. This may have implications for understanding and preventing human obesity.


Subject(s)
Acetylcysteine/pharmacology , Adiposity/drug effects , Free Radical Scavengers/pharmacology , Methionine/deficiency , Taurine/pharmacology , Amino Acids/blood , Amino Acids, Sulfur/metabolism , Animals , Cysteine/blood , Diet , Fatty Acids, Nonesterified/blood , Gene Expression Regulation, Enzymologic/drug effects , Lipids/blood , Male , Rats , Rats, Inbred F344 , Stearoyl-CoA Desaturase/biosynthesis , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Weight Gain/drug effects
6.
J Nutrigenet Nutrigenomics ; 5(3): 132-57, 2012.
Article in English | MEDLINE | ID: mdl-23052097

ABSTRACT

BACKGROUND/AIMS: Methionine restriction (MR) is a dietary intervention that increases lifespan, reduces adiposity and improves insulin sensitivity. These effects are reversed by supplementation of the MR diet with cysteine (MRC). Genomic and metabolomic studies were conducted to identify potential mechanisms by which MR induces favorable metabolic effects, and that are reversed by cysteine supplementation. METHODS: Gene expression was examined by microarray analysis and TaqMan quantitative PCR. Levels of selected proteins were measured by Western blot and metabolic intermediates were analyzed by mass spectrometry. RESULTS: MR increased lipid metabolism in inguinal adipose tissue and quadriceps muscle while it decreased lipid synthesis in liver. In inguinal adipose tissue, MR not only caused the transcriptional upregulation of genes associated with fatty acid synthesis but also of Lpin1, Pc, Pck1 and Pdk1, genes that are associated with glyceroneogenesis. MR also upregulated lipolysis-associated genes in inguinal fat and led to increased oxidation in this tissue, as suggested by higher levels of methionine sulfoxide and 13-HODE + 9-HODE compared to control-fed (CF) rats. Moreover, MR caused a trend toward the downregulation of inflammation-associated genes in inguinal adipose tissue. MRC reversed most gene and metabolite changes induced by MR in inguinal adipose tissue, but drove the expression of Elovl6, Lpin1, Pc, and Pdk1 below CF levels. In liver, MR decreased levels of a number of long-chain fatty acids, glycerol and glycerol-3-phosphate corresponding with the gene expression data. Although MR increased the expression of genes associated with carbohydrate metabolism, levels of glycolytic intermediates were below CF levels. MR, however, stimulated gluconeogenesis and ketogenesis in liver tissue. As previously reported, sulfur amino acids derived from methionine were decreased in liver by MR, but homocysteine levels were elevated. Increased liver homocysteine levels by MR were associated with decreased cystathionine ß-synthase (CBS) protein levels and lowered vitamin B6 and 5-methyltetrahydrofolate (5MeTHF) content. Finally, MR upregulated fibroblast growth factor 21 (FGF21) gene and protein levels in both liver and adipose tissues. MRC reversed some of MR's effects in liver and upregulated the transcription of genes associated with inflammation and carcinogenesis such as Cxcl16, Cdh17, Mmp12, Mybl1, and Cav1 among others. In quadriceps muscle, MR upregulated lipid metabolism-associated genes and increased 3-hydroxybutyrate levels suggesting increased fatty acid oxidation as well as stimulation of gluconeogenesis and glycogenolysis in this tissue. CONCLUSION: Increased lipid metabolism in inguinal adipose tissue and quadriceps muscle, decreased triglyceride synthesis in liver and the downregulation of inflammation-associated genes are among the factors that could favor the lean phenotype and increased insulin sensitivity observed in MR rats.


Subject(s)
Adipose Tissue/metabolism , Cysteine/metabolism , Liver/metabolism , Methionine/metabolism , Quadriceps Muscle/metabolism , Animals , Carbohydrates/chemistry , Cystathionine beta-Synthase/metabolism , Diet , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gluconeogenesis , Inflammation , Ketones/metabolism , Lipid Metabolism , Male , Mass Spectrometry/methods , Nutrigenomics , Rats , Rats, Inbred F344 , Tetrahydrofolates/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...