Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-444467

ABSTRACT

Antiviral therapies are urgently needed to treat and limit the development of severe COVID-19 disease. Ivermectin, a broad-spectrum anti-parasitic agent, has been shown to have anti-SARS-CoV-2 activity in Vero cells at a concentration of 5 {micro}M. These in vitro results triggered the investigation of ivermectin as a treatment option to alleviate COVID-19 disease. In April 2021, the World Health Organization stated, however, the following: "the current evidence on the use of ivermectin to treat COVID-19 patients is inconclusive". It is speculated that the in vivo concentration of ivermectin is too low to exert a strong antiviral effect. Here, we performed a head-to head comparison of the antiviral activity of ivermectin and a structurally related, but metabolically more stable, moxidectin in multiple in vitro models of SARS-CoV-2 infection, including physiologically relevant human respiratory epithelial cells. Both moxidectin and ivermectin exhibited antiviral activity in Vero E6 cells. Subsequent experiments revealed that the compounds predominantly act on a step after virus cell entry. Surprisingly, however, in human airway-derived cell models, moxidectin and ivermectin failed to inhibit SARS-CoV-2 infection, even at a concentration of 10 {micro}M. These disappointing results calls for a word of caution in the interpretation of anti-SARS-CoV-2 activity of drugs solely based on Vero cells. Altogether, these findings suggest that, even by using a high-dose regimen of ivermectin or switching to another drug in the same class are unlikely to be useful for treatment against SARS-CoV-2 in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...