Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 13(1): 47, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320987

ABSTRACT

Rydberg excitons (analogues of Rydberg atoms in condensed matter systems) are highly excited bound electron-hole states with large Bohr radii. The interaction between them as well as exciton coupling to light may lead to strong optical nonlinearity, with applications in sensing and quantum information processing. Here, we achieve strong effective photon-photon interactions (Kerr-like optical nonlinearity) via the Rydberg blockade phenomenon and the hybridisation of excitons and photons forming polaritons in a Cu2O-filled microresonator. Under pulsed resonant excitation polariton resonance frequencies are renormalised due to the reduction of the photon-exciton coupling with increasing exciton density. Theoretical analysis shows that the Rydberg blockade plays a major role in the experimentally observed scaling of the polariton nonlinearity coefficient as ∝ n4.4±1.8 for principal quantum numbers up to n = 7. Such high principal quantum numbers studied in a polariton system for the first time are essential for realisation of high Rydberg optical nonlinearities, which paves the way towards quantum optical applications and fundamental studies of strongly correlated photonic (polaritonic) states in a solid state system.

2.
Nat Commun ; 13(1): 7191, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36424397

ABSTRACT

The strong nonlinearities of exciton-polariton condensates in lattices make them suitable candidates for neuromorphic computing and physical simulations of complex problems. So far, all room temperature polariton condensate lattices have been achieved by nanoimprinting microcavities, which by nature lacks the crucial tunability required for realistic reconfigurable simulators. Here, we report the observation of a quantised oscillating nonlinear quantum fluid in 1D and 2D potentials in an organic microcavity at room temperature, achieved by an on-the-fly fully tuneable optical approach. Remarkably, the condensate is delocalised from the excitation region by macroscopic distances, leading both to longer coherence and a threshold one order of magnitude lower than that with a conventional Gaussian excitation profile. We observe different mode selection behaviour compared to inorganic materials, which highlights the anomalous scaling of blueshift with pump intensity and the presence of sizeable energy-relaxation mechanisms. Our work is a major step towards a fully tuneable polariton simulator at room temperature.

3.
Nat Mater ; 21(7): 767-772, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35422507

ABSTRACT

Giant Rydberg excitons with principal quantum numbers as high as n = 25 have been observed in cuprous oxide (Cu2O), a semiconductor in which the exciton diameter can become as large as ∼1 µm. The giant dimension of these excitons results in excitonic interaction enhancements of orders of magnitude. Rydberg exciton-polaritons, formed by the strong coupling of Rydberg excitons to cavity photons, are a promising route to exploit these interactions and achieve a scalable, strongly correlated solid-state platform. However, the strong coupling of these excitons to cavity photons has remained elusive. Here, by embedding a thin Cu2O crystal into a Fabry-Pérot microcavity, we achieve strong coupling of light to Cu2O Rydberg excitons up to n = 6 and demonstrate the formation of Cu2O Rydberg exciton-polaritons. These results pave the way towards realizing strongly interacting exciton-polaritons and exploring strongly correlated phases of matter using light on a chip.

SELECTION OF CITATIONS
SEARCH DETAIL
...