Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
2.
Cancers (Basel) ; 16(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38254774

ABSTRACT

Multiple myeloma (MM) is the second most common hematological malignancy. Approximately 15% of MM patients are affected by the t(4;14) translocation resulting in the IGH::NSD2 fusion transcript. Breakage occurs in three major breakpoint regions within the NSD2 gene (MB4-1, MB4-2, and MB4-3), where MB4-1 leads to the production of full-length protein, while truncated proteins are expressed in the other two cases. Measurable residual disease (MRD) has been conclusively established as a crucial prognostic factor in MM. The IGH::NSD2 fusion transcript can serve as a sensitive MRD marker. Using bone marrow (BM) and peripheral blood (PB) samples from 111 patients, we developed a highly sensitive quantitative real-time PCR (qPCR) and digital PCR (dPCR) system capable of detecting fusion mRNAs with a sensitivity of up to 1:100,000. PB samples exhibited sensitivity three orders of magnitude lower compared to BM samples. Patients with an MB4-2 breakpoint demonstrated significantly reduced overall survival (p = 0.003). Our novel method offers a simple and sensitive means for detecting MRD in a substantial proportion of MM patients. Monitoring may be carried out even from PB samples. The literature lacks consensus regarding survival outcomes among patients with different NSD2 breakpoints. Our data align with previous findings indicating that patients with the MB4-2 breakpoint type tend to exhibit unfavorable overall survival.

3.
PLoS One ; 16(6): e0253386, 2021.
Article in English | MEDLINE | ID: mdl-34153064

ABSTRACT

Monitoring measurable residual disease (MRD) in acute myeloid leukemia (AML) plays an important role in predicting relapse and outcome. The applicability of the leukemia-initiating nucleophosmin1 (NPM1) gene mutations in MRD detection is well-established, while that of isocitrate dehydrogenase1/2 (IDH1/2) mutations are matter of debate. The aim of this study was to investigate the stability of NPM1 and IDH1/2 mutations at diagnosis and relapse retrospectively in 916 adult AML patients. The prognostic value of MRD was evaluated by droplet digital PCR on the DNA level in a selected subgroup of patients in remission. NPM1 re-emerged at relapse in 91% (72/79), while IDH1/2 in 87% (20/23) of mutation-positive cases at diagnosis. NPM1 mutation did not develop at relapse, on the contrary novel IDH1/2 mutations occurred in 3% (3/93) of previously mutation-negative cases. NPM1 MRD-positivity after induction (n = 116) proved to be an independent, adverse risk factor (MRDpos 24-month OS: 39.3±6.2% versus MRDneg: 58.5±7.5%, p = 0.029; HR: 2.16; 95%CI: 1.25-3.74, p = 0.006). In the favorable subgroup of mutated NPM1 without fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) or with low allelic ratio, NPM1 MRD provides a valuable prognostic biomarker (NPM1 MRDpos versus MRDneg 24-month OS: 42.9±6.7% versus 66.7±8.6%; p = 0.01). IDH1/2 MRD-positivity after induction (n = 62) was also associated with poor survival (MRDpos 24-month OS: 41.3±9.2% versus MRDneg: 62.5±9.0%, p = 0.003; HR 2.81 95%CI 1.09-7.23, p = 0.032). While NPM1 variant allele frequency decreased below 2.5% in remission in all patients, IDH1/2 mutations (typically IDH2 R140Q) persisted in 24% of cases. Our results support that NPM1 MRD even at DNA level is a reliable prognostic factor, while IDH1/2 mutations may represent pre-leukemic, founder or subclonal drivers.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Genetic Markers/genetics , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Mutation/genetics , Nucleophosmin , Polymerase Chain Reaction , Survival Analysis , Treatment Outcome , Young Adult
4.
Magy Onkol ; 63(4): 282-287, 2019 Dec 09.
Article in Hungarian | MEDLINE | ID: mdl-31821383

ABSTRACT

In contrast to solid tumours, the genetic background of acute myeloid leukemia (AML) is characterized by a relatively low number of alterations per sample (average 3-5 mutations similarly to paediatric malignancies). Although the mutational background is rather heterogeneous, the detection of genetic alterations has diagnostic, prognostic and therapeutic relevance. We investigated cytogenetic and most commonly occurring molecular genetic alterations, and their co-occurrence in 830 AML patients diagnosed and treated in our institute between 2001 and 2019. Results from the recently introduced next generation sequencing for seven AML patients are also presented. Both methods (previously performed standard PCR-based tests and NGS) achieved the same results for commonly occurring mutations, but NGS technique was capable to identify further, rarely occurring mutations which bear diagnostic and prognostic importance according to the recent European LeukemiaNet recommendations. The introduction of NGS techniques to routine laboratory diagnostic applications is a required step following international expertise.


Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Myeloid, Acute , Child , Humans , Mutation , Precision Medicine , Prognosis
5.
Eur J Med Chem ; 184: 111710, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31614258

ABSTRACT

Aberrant activation of FMS-like tyrosine receptor kinase 3 (FLT3) is implicated in the pathogenesis of acute myeloid leukemia (AML) in 20-30% of patients. In this study we identified a highly selective (phenylethenyl)quinazoline compound family as novel potent inhibitors of the FLT3-ITD and FLT3-D835Y kinases. Their prominent effects were confirmed by biochemical and cellular proliferation assays followed by mice xenograft studies. Our modelling experiments and the chemical structures of the compounds predict the possibility of covalent inhibition. The most effective compounds triggered apoptosis in FLT3-ITD AML cells but had either weak or no effect in FLT3-independent leukemic and non-leukemic cell lines. Our results strongly suggest that our compounds may become therapeutics in relapsing and refractory AML disease harboring various ITD and tyrosine kinase domain mutations, by their ability to overcome drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Molecular Structure , Mutation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
6.
Int J Mol Sci ; 20(18)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31509957

ABSTRACT

Primarily due to recent advances of detection techniques, microchimerism (the proportion of minor variant population is below 1%) has recently gained increasing attention in the field of transplantation. Availability of polymorphic markers, such as deletion insertion or single nucleotide polymorphisms along with a vast array of high sensitivity detection techniques, allow the accurate detection of small quantities of donor- or recipient-related materials. This diagnostic information can improve monitoring of allograft injuries in solid organ transplantations (SOT) as well as facilitate early detection of relapse in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the present review, genetic marker and detection platform options applicable for microchimerism detection are discussed. Furthermore, current results of relevant clinical studies in the context of microchimerism and SOT or allo-HSCT respectively are also summarized.


Subject(s)
Chimerism , DNA/genetics , Hematopoietic Stem Cell Transplantation/methods , Tissue Donors/statistics & numerical data , Transplantation Chimera/genetics , DNA/blood , Humans , Microsatellite Repeats/genetics , Organ Transplantation/methods , Polymorphism, Single Nucleotide , Transplantation Chimera/blood , Transplantation Chimera/immunology , Transplantation, Homologous
7.
ACS Med Chem Lett ; 5(4): 298-303, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24900830

ABSTRACT

Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials. In the present study we have identified dual EGFR/c-Met inhibitors and designed novel N-[4-(quinolin-4-yloxy)-phenyl]-biarylsulfonamide derivatives, which inhibit the c-Met receptor and both the wild-type and the activating mutant EGFR kinases in nanomolar range. We have demonstrated by Western blot analysis that compound 10 inhibits EGFR and c-Met phosphorylation at cellular level and effectively inhibits viability of the NSCLC cell lines.

8.
PLoS One ; 9(4): e95688, 2014.
Article in English | MEDLINE | ID: mdl-24759913

ABSTRACT

Epstein-Barr virus (EBV) is a human herpesvirus, which is causally associated with the development of several B lymphocytic malignancies that include Burkitt's lymphomas, Hodgkin's disease, AIDS and posttransplant associated lymphomas. The transforming activity of EBV is orchestrated by several latent viral proteins that mimic and modulate cellular growth promoting and antiapoptotic signaling pathways, which involve among others the activity of protein kinases. In an effort to identify small molecule inhibitors of the growth of EBV-transformed B lymphocytes a library of 254 kinase inhibitors was screened. This effort identified two tyrosine kinase inhibitors and two MEK inhibitors that compromised preferentially the viability of EBV-infected human B lymphocytes. Our findings highlight the possible dependence of EBV-infected B lymphocytes on specific kinase-regulated pathways underlining the potential for the development of small molecule-based therapeutics that could target selectively EBV-associated human B lymphocyte malignancies.


Subject(s)
B-Lymphocytes/virology , Cell Survival/drug effects , Herpesvirus 4, Human/pathogenicity , Protein Kinase Inhibitors/pharmacology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...