Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Sport Nutr Exerc Metab ; 32(3): 195-203, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35393372

ABSTRACT

Military training is characterized by high daily energy expenditures which are difficult to match with energy intake, potentially resulting in negative energy balance (EB) and low energy availability (EA). The aim of this study was to quantify EB and EA during British Army Officer Cadet training. Thirteen (seven women) Officer Cadets (mean ± SD: age 24 ± 3 years) volunteered to participate. EB and EA were estimated from energy intake (weighing of food and food diaries) and energy expenditure (doubly labeled water) measured in three periods of training: 9 days on-camp (CAMP), a 5-day field exercise (FEX), and a 9-day mixture of both CAMP and field-based training (MIX). Variables were compared by condition and gender with a repeated-measures analysis of variance. Negative EB was greatest during FEX (-2,197 ± 455 kcal/day) compared with CAMP (-692 ± 506 kcal/day; p < .001) and MIX (-1,280 ± 309 kcal/day; p < .001). EA was greatest in CAMP (23 ± 10 kcal·kg free-fat mass [FFM]-1·day-1) compared with FEX (1 ± 16 kcal·kg FFM-1·day-1; p = .002) and MIX (10 ± 7 kcal·kg FFM-1·day-1; p = .003), with no apparent difference between FEX and MIX (p = .071). Irrespective of condition, there were no apparent differences between gender in EB (p = .375) or EA (p = .385). These data can be used to inform evidenced-based strategies to manage EA and EB during military training, and enhance the health and performance of military personnel.


Subject(s)
Military Personnel , Adult , Energy Intake , Energy Metabolism , Exercise , Female , Humans , Nutritional Status , Young Adult
2.
J Clin Densitom ; 24(3): 481-489, 2021.
Article in English | MEDLINE | ID: mdl-33454177

ABSTRACT

Body composition is associated with many noncommunicable diseases. The accuracy of many simple techniques used for the assessment of body composition is influenced by the fact that they do not take into account tissue hydration and this can be particularly problematic in paediatric populations. The aims of this study were: (1) to assess the agreement of two dual energy X-ray absorptiometry (DXA) systems for determining total and regional (arms, legs, trunk) fat, lean, and bone mass and (2) to compare lean soft tissue (LST) hydration correction methods in children. One hundred and twenty four healthy children aged between 6 and 16 years old underwent DXA scans using 2 GE healthcare Lunar systems (iDXA and Prodigy). Tissue hydration was either calculated by dividing total body water (TBW), by 4-component model derived fat free mass (HFFMTBW) or by using the age and sex specific coefficients of Lohman, 1986 (HFFMLohman) and used to correct LST. Regression analysis was performed to develop cross-calibration equations between DXA systems and a paired samples t-test was conducted to assess the difference between LST hydration correction methods. iDXA resulted in significantly lower estimates of total and regional fat and lean mass, compared to Prodigy. HFFMTBW showed a much larger age/sex related variability than HFFMLohman. A 2.0 % difference in LST was observed in the boys (34.5 kg vs 33.8 kg respectively, p < 0.05) and a 2.5% difference in the girls (28.2 kg vs 27.5 kg respectively, p < 0.05) when corrected using either HFFMTBW or HFFMLohman. Care needs to be exercised when combining data from iDXA and Prodigy, as total and regional estimates of body composition can differ significantly. Furthermore, tissue hydration should be taken into account when assessing body composition as it can vary considerably within a healthy paediatric population even within specific age and/or sex groups.


Subject(s)
Body Composition , Bone Density , Absorptiometry, Photon , Adolescent , Child , Female , Humans , Leg , Male , Torso
3.
Scand J Med Sci Sports ; 29(9): 1313-1321, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31136027

ABSTRACT

Wearable physical activity (PA) monitors have improved the ability to estimate free-living total energy expenditure (TEE) but their application during arduous military training alongside more well-established research methods has not been widely documented. This study aimed to assess the validity of two wrist-worn activity monitors and a PA log against doubly labeled water (DLW) during British Army Officer Cadet (OC) training. For 10 days of training, twenty (10 male and 10 female) OCs (mean ± SD: age 23 ± 2 years, height 1.74 ± 0.09 m, body mass 77.0 ± 9.3 kg) wore one research-grade accelerometer (GENEActiv, Cambridge, UK) on the dominant wrist, wore one commercially available monitor (Fitbit SURGE, USA) on the non-dominant wrist, and completed a self-report PA log. Immediately prior to this 10-day period, participants consumed a bolus of DLW and provided daily urine samples, which were analyzed by mass spectrometry to determine TEE. Bivariate correlations and limits of agreement (LoA) were employed to compare TEE from each estimation method to DLW. Average daily TEE from DLW was 4112 ± 652 kcal·day-1 against which the GENEActiv showed near identical average TEE (mean bias ± LoA: -15 ± 851 kcal. day-1 ) while Fitbit tended to underestimate (-656 ± 683 kcal·day-1 ) and the PA log substantially overestimate (+1946 ± 1637 kcal·day-1 ). Wearable physical activity monitors provide a cheaper and more practical method for estimating free-living TEE than DLW in military settings. The GENEActiv accelerometer demonstrated good validity for assessing daily TEE and would appear suitable for use in large-scale, longitudinal military studies.


Subject(s)
Accelerometry/instrumentation , Energy Metabolism , Fitness Trackers , Physical Conditioning, Human , Adult , Deuterium Oxide , Female , Humans , Male , Military Personnel , Young Adult
4.
Rapid Commun Mass Spectrom ; 32(24): 2122-2128, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30252964

ABSTRACT

RATIONALE: Variation in 18 O natural abundance can lead to errors in the calculation of total energy expenditure (TEE) when using the doubly labelled water (DLW) method. The use of Bayesian statistics allows a distribution to be assigned to 18 O natural abundance, thus allowing a best-fit value to be used in the calculation. The aim of this study was to calculate within-subject variation in 18 O natural abundance and apply this to our original working model for TEE calculation. METHODS: Urine samples from a cohort of 99 women, dosed with 50 g of 20% 2 H2 O, undertaking a 14-day breast milk intake protocol, were analysed for 18 O. The within-subject variance was calculated and applied to a Bayesian model for the calculation of TEE in a separate cohort of 36 women. This cohort of 36 women had taken part in a DLW study and had been dosed with 80 mg/kg body weight 2 H2 O and 150 mg/kg body weight H2 18 O. RESULTS: The average change in the δ18 O value from the 99 women was 1.14‰ (0.77) [0.99, 1.29], with the average within-subject 18 O natural abundance variance being 0.13‰2 (0.25) [0.08, 0.18]. There were no significant differences in TEE (9745 (1414), 9804 (1460) and 9789 (1455) kJ/day, non-Bayesian, Bluck Bayesian and modified Bayesian models, respectively) between methods. CONCLUSIONS: Our findings demonstrate that using a reduced natural variation in 18 O as calculated from a population does not impact significantly on the calculation of TEE in our model. It may therefore be more conservative to allow a larger variance to account for individual extremes.


Subject(s)
Body Water/chemistry , Energy Metabolism , Adult , Bayes Theorem , Body Water/metabolism , Cohort Studies , Female , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Models, Biological , Oxygen Isotopes/analysis , Oxygen Isotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...